Skip to main content

An Executable Formal Framework for Safety-Critical Human Multitasking

  • Conference paper
  • First Online:
NASA Formal Methods (NFM 2018)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10811))

Included in the following conference series:

Abstract

When a person is concurrently interacting with different systems, the amount of cognitive resources required (cognitive load) could be too high and might prevent some tasks from being completed. When such human multitasking involves safety-critical tasks, for example in an airplane, a spacecraft, or a car, failure to devote sufficient attention to the different tasks could have serious consequences. To study this problem, we define an executable formal model of human attention and multitasking in Real-Time Maude. It includes a description of the human working memory and the cognitive processes involved in the interaction with a device. Our framework enables us to analyze human multitasking through simulation, reachability analysis, and LTL and timed CTL model checking, and we show how a number of prototypical multitasking problems can be analyzed in Real-Time Maude. We illustrate our modeling and analysis framework by studying the interaction with a GPS navigation system while driving, and apply model checking to show that in some cases the cognitive load of the navigation system could cause the driver to keep the focus away from driving for too long.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Since we now consider structured tasks and add delays to basic tasks, we redefine the cognitive load of a task to be \(\sum \frac{d_i t_i}{t_i + dly _i}\), where \(d_i\), \(t_i\) and \( dly _i\) denote the difficulty, duration and delay of each basic task i of the current subtask. The cognitive load of a task therefore changes every time a new subtask begins, and remains the same throughout the execution of the subtask.

  2. 2.

    We do not show the variable declarations, but follow the convention that variables are written in all capital letters.

  3. 3.

    The variable A:AttributeSet captures the other attributes in inner objects.

References

  1. Arrington, C.M., Logan, G.D.: Voluntary task switching: chasing the elusive homunculus. J. Exp. Psychol. Learn. Mem. Cogn. 31(4), 683–702 (2005)

    Article  Google Scholar 

  2. Australian Transport Safety Bureau: Dangerous distraction. Safety Investigation Report B2004/0324 (2005)

    Google Scholar 

  3. Barrouillet, P., Bernardin, S., Camos, V.: Time constraints and resource sharing in adults’ working memory spans. J. Exp. Psychol. Gen. 133(1), 83–100 (2004)

    Article  Google Scholar 

  4. Broccia, G., Milazzo, P., Ölveczky, P.: An executable formal framework for safety-critical human multitasking (2017). Report: http://www.di.unipi.it/msvbio/software/HumanMultitasking.html

  5. Broccia, G., Milazzo, P., Ölveczky, P.C.: An algorithm for simulating human selective attention. In: Cerone, A., Roveri, M. (eds.) SEFM 2017. LNCS, vol. 10729, pp. 48–55. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74781-1_4

    Chapter  Google Scholar 

  6. Byrne, M.D., Kirlik, A.: Using computational cognitive modeling to diagnose possible sources of aviation error. Int. J. Aviat. Psychol. 15(2), 135–155 (2005)

    Article  Google Scholar 

  7. Cerone, A.: A cognitive framework based on rewriting logic for the analysis of interactive systems. In: De Nicola, R., Kühn, E. (eds.) SEFM 2016. LNCS, vol. 9763, pp. 287–303. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41591-8_20

    Google Scholar 

  8. Clark, T., et al.: Impact of clinical alarms on patient safety. Technical report, ACCE Healthcare Technology Foundation (2006)

    Google Scholar 

  9. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71999-1

    MATH  Google Scholar 

  10. Dingus, T.A., Guo, F., Lee, S., Antin, J.F., Perez, M., Buchanan-King, M., Hankey, J.: Driver crash risk factors and prevalence evaluation using naturalistic driving data. Proc. Nat. Acad. Sci. 113(10), 2636–2641 (2016)

    Article  Google Scholar 

  11. Dismukes, R., Nowinski, J.: Prospective memory, concurrent task management, and pilot error. In: Attention: From Theory to Practice. Oxford University Press, Oxford (2007)

    Google Scholar 

  12. de Fockert, J.W., Rees, G., Frith, C.D., Lavie, N.: The role of working memory in visual selective attention. Science 291(5509), 1803–1806 (2001)

    Article  Google Scholar 

  13. Gelman, G., Feigh, K.M., Rushby, J.M.: Example of a complementary use of model checking and human performance simulation. IEEE Trans. Hum.-Mach. Syst. 44(5), 576–590 (2014)

    Article  Google Scholar 

  14. Joshi, A., Miller, S.P., Heimdahl, M.P.E.: Mode confusion analysis of a flight guidance system using formal methods. In: Digital Avionics Systems Conference (DASC 2003). IEEE (2003)

    Google Scholar 

  15. Lepri, D., Ábrahám, E., Ölveczky, P.C.: Sound and complete timed CTL model checking of timed Kripke structures and real-time rewrite theories. Sci. Comput. Program. 99, 128–192 (2015)

    Article  Google Scholar 

  16. Lofsky, A.S.: Turn your alarms on! APSF Newsl.: Off. J. Anesth. Patient Saf. Found. 19(4), 43 (2005)

    Google Scholar 

  17. Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol. Rev. 63(2), 81–97 (1956)

    Article  Google Scholar 

  18. Ölveczky, P.C.: Real-Time Maude and its applications. In: Escobar, S. (ed.) WRLA 2014. LNCS, vol. 8663, pp. 42–79. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12904-4_3

    Google Scholar 

  19. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude. High.-Order Symb. Comput. 20(1–2), 161–196 (2007)

    Article  MATH  Google Scholar 

  20. Salvucci, D.D.: Predicting the effects of in-car interface use on driver performance: an integrated model approach. Int. J. Hum. Comput. Stud. 55(1), 85–107 (2001)

    Article  MATH  Google Scholar 

  21. Salvucci, D.D., Taatgen, N.A.: Threaded cognition: an integrated theory of concurrent multitasking. Psychol. Rev. 115(1), 101–130 (2008)

    Article  Google Scholar 

  22. Wickens, C.D., Gutzwiller, R.S.: The status of the strategic task overload model (STOM) for predicting multi-task management. In: Proceedings of Human Factors and Ergonomics Society Annual Meeting, vol. 61, pp. 757–761. SAGE Publications (2017)

    Google Scholar 

  23. Wickens, C.D., Sebok, A., Li, H., Sarter, N., Gacy, A.M.: Using modeling and simulation to predict operator performance and automation-induced complacency with robotic automation: a case study and empirical validation. Hum. Fact. 57(6), 959–975 (2015)

    Article  Google Scholar 

  24. Wickens, C.D., Gutzwiller, R.S., Vieane, A., Clegg, B.A., Sebok, A., Janes, J.: Time sharing between robotics and process control: validating a model of attention switching. Hum. Fact. 58(2), 322–343 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the project “Metodologie informatiche avanzate per l’analisi di dati biomedici” funded by the University of Pisa (PRA 2017 44).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanna Broccia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Broccia, G., Milazzo, P., Ölveczky, P.C. (2018). An Executable Formal Framework for Safety-Critical Human Multitasking. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds) NASA Formal Methods. NFM 2018. Lecture Notes in Computer Science(), vol 10811. Springer, Cham. https://doi.org/10.1007/978-3-319-77935-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77935-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77934-8

  • Online ISBN: 978-3-319-77935-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics