Skip to main content

An Introduction to Epigenetics in Cardiovascular Development, Disease, and Sexualization

  • Chapter
  • First Online:
Sex-Specific Analysis of Cardiovascular Function

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1065))

Abstract

Epigenetic regulation of gene expression is integral to cell differentiation, development, and disease. Modes of epigenetic regulation—including DNA methylation, histone modifications, and ncRNA-based regulation—alter chromatin structure, promotor accessibility, and contribute to posttranscriptional modifications. In the cardiovascular system, epigenetic regulation is necessary for proper cardiovascular development and homeostasis, while epigenetic dysfunction is associated with improper cardiac development and disease.

Early sexualization of tissues, including X-inactivation in females and maternal and paternal imprinting, is also orchestrated through epigenetic mechanisms. Furthermore, sex chromosomes encode various sex-specific genes involved in epigenetic regulation, while sex hormones can act as regulatory cofactors that may predispose or protect males and females against developing diseases with a marked sex bias.

The following book chapter summarizes the field of epigenetics in the context of cardiovascular development and disease while also highlighting the role of epigenetic regulation as a powerful source of sex differences within the cardiovascular system.

Art work by Piet Michiels, Leuven, Belgium

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abi Khalil C. The emerging role of epigenetics in cardiovascular disease. Ther Adv Chronic Dis. 2014;5(4):178–87. https://doi.org/10.1177/2040622314529325.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17(8):487–500. https://doi.org/10.1038/nrg.2016.59.

    Article  PubMed  CAS  Google Scholar 

  3. Arnold AP, Reue K, Eghbali M, Vilain E, Chen X, Ghahramani N, et al. The importance of having two X chromosomes. Philos Trans R Soc Lond Ser B Biol Sci. 2016;371(1688):20150113. https://doi.org/10.1098/rstb.2015.0113.

    Article  CAS  Google Scholar 

  4. Balaton BP, Brown CJ. Escape artists of the X chromosome. Trends Genet. 2016;32(6):348–59. https://doi.org/10.1016/j.tig.2016.03.007.

    Article  PubMed  CAS  Google Scholar 

  5. Balaton BP, Cotton AM, Brown CJ. Derivation of consensus inactivation status for X-linked genes from genome-wide studies. Biol Sex Differ. 2015;6:35. https://doi.org/10.1186/s13293-015-0053-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Banka S, Lederer D, Benoit V, Jenkins E, Howard E, Bunstone S, et al. Novel KDM6A (UTX) mutations and a clinical and molecular review of the X-linked kabuki syndrome (KS2). Clin Genet. 2015;87(3):252–8. https://doi.org/10.1111/cge.12363.

    Article  PubMed  CAS  Google Scholar 

  7. Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–95. https://doi.org/10.1038/cr.2011.22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009;23(7):781–3. https://doi.org/10.1101/gad.1787609.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Bhat-Nakshatri P, Wang G, Collins NR, Thomson MJ, Geistlinger TR, Carroll JS, et al. Estradiol-regulated microRNAs control estradiol response in breast cancer cells. Nucleic Acids Res. 2009;37(14):4850–61. https://doi.org/10.1093/nar/gkp500.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Bloomer LDS, Nelson CP, Eales J, Denniff M, Christofidou P, Debiec R, et al. Male-specific region of the Y chromosome and cardiovascular risk: phylogenetic analysis and gene expression studies. Arterioscler Thromb Vasc Biol. 2013;33(7):1722–7. https://doi.org/10.1161/ATVBAHA.113.301608.

    Article  PubMed  CAS  Google Scholar 

  11. Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, Grompe M, Tonlorenzi R, Willard HF. A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature. 1991;349(6304):38–44. https://doi.org/10.1038/349038a0.

    Article  PubMed  CAS  Google Scholar 

  12. Brown CJ, Willard HF. The human X-inactivation centre is not required for maintenance of X-chromosome inactivation. Nature. 1994;368(6467):154–6. https://doi.org/10.1038/368154a0.

    Article  PubMed  CAS  Google Scholar 

  13. Burgoyne PS, Arnold AP. A primer on the use of mouse models for identifying direct sex chromosome effects that cause sex differences in non-gonadal tissues. Biol Sex Differ. 2016;7:68. https://doi.org/10.1186/s13293-016-0115-5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Cao DJ, Wang ZV, Battiprolu PK, Jiang N, Morales CR, Kong Y, et al. Histone deacetylase (HDAC) inhibitors attenuate cardiac hypertrophy by suppressing autophagy. Proc Natl Acad Sci. 2011;108(10):4123–8. https://doi.org/10.1073/pnas.1015081108.

    Article  PubMed  Google Scholar 

  15. Carè A, Catalucci D, Felicetti F, Bonci D, Addario A, Gallo P, et al. MicroRNA-133 controls cardiac hypertrophy. Nat Med. 2007;13(5):613–8. https://doi.org/10.1038/nm1582.

    Article  PubMed  CAS  Google Scholar 

  16. Castellano L, Giamas G, Jacob J, Coombes RC, Lucchesi W, Thiruchelvam P, et al. The estrogen receptor-α-induced microRNA signature regulates itself and its transcriptional response. Proc Natl Acad Sci. 2009;106(37):15732–7. https://doi.org/10.1073/pnas.0906947106.

    Article  PubMed  Google Scholar 

  17. Cedar H, Bergman Y. Programming of DNA methylation patterns. Annu Rev Biochem. 2012;81:97–117. https://doi.org/10.1146/annurev-biochem-052610-091920.

    Article  PubMed  CAS  Google Scholar 

  18. Chamberlain AA, Lin M, Lister RL, Maslov AA, Wang Y, Suzuki M, et al. DNA methylation is developmentally regulated for genes essential for cardiogenesis. J Am Heart Assoc. 2014;3(3):e000976. https://doi.org/10.1161/JAHA.114.000976.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Chang S, McKinsey TA, Zhang CL, Richardson JA, Hill JA, Olson EN. Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol. 2004;24(19):8467–76. https://doi.org/10.1128/MCB.24.19.8467-8476.2004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Charchar FJ, Bloomer LD, Barnes TA, Cowley MJ, Nelson CP, Wang Y, et al. Inheritance of coronary artery disease in men: an analysis of the role of the Y chromosome. Lancet. 2012;379(9819):915–22. https://doi.org/10.1016/S0140-6736(11)61453-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Charchar FJ, Tomaszewski M, Padmanabhan S, Lacka B, Upton MN, Inglis GC, et al. The Y chromosome effect on blood pressure in two European populations. Hypertension (Dallas, Tex.: 1979). 2002;39(2 Pt 2):353–6.

    Article  CAS  Google Scholar 

  22. Chen X, McClusky R, Chen J, Beaven SW, Tontonoz P, Arnold AP, Reue K. The number of x chromosomes causes sex differences in adiposity in mice. PLoS Genet. 2012;8(5):e1002709. https://doi.org/10.1371/journal.pgen.1002709.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Cifuentes-Rojas C, Hernandez AJ, Sarma K, Lee JT. Regulatory interactions between RNA and polycomb repressive complex 2. Mol Cell. 2014;55(2):171–85. https://doi.org/10.1016/j.molcel.2014.05.009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Clemson CM, McNeil JA, Willard HF, Lawrence JB. XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J Cell Biol. 1996;132(3):259–75. https://doi.org/10.1083/jcb.132.3.259.

    Article  PubMed  CAS  Google Scholar 

  25. Cortez D, Marin R, Toledo-Flores D, Froidevaux L, Liechti A, Waters PD, et al. Origins and functional evolution of Y chromosomes across mammals. Nature. 2014;508(7497):488–93. https://doi.org/10.1038/nature13151.

    Article  PubMed  CAS  Google Scholar 

  26. da Rocha ST, Boeva V, Escamilla-Del-Arenal M, Ancelin K, Granier C, Matias NR, et al. Jarid2 is implicated in the initial Xist-induced targeting of PRC2 to the inactive X chromosome. Mol Cell. 2014;53(2):301–16. https://doi.org/10.1016/j.molcel.2014.01.002.

    Article  PubMed  CAS  Google Scholar 

  27. Dan J, Chen T. Genetic studies on mammalian DNA methyltransferases. In: DNA methyltransferases – role and function. Cham: Springer; 2016. p. 123–50. https://doi.org/10.1007/978-3-319-43624-1_6.

    Chapter  Google Scholar 

  28. Dong C, Yoon W, Goldschmidt-Clermont PJ. DNA methylation and atherosclerosis. J Nutr. 2002;132(8 Suppl):2406S–9S.

    Article  CAS  PubMed  Google Scholar 

  29. Du S, Itoh N, Askarinam S, Hill H, Arnold AP, Voskuhl RR. XY sex chromosome complement, compared with XX, in the CNS confers greater neurodegeneration during experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A. 2014;111(7):2806–11. https://doi.org/10.1073/pnas.1307091111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983;301(5895):89–92. https://doi.org/10.1038/301089a0.

    Article  PubMed  CAS  Google Scholar 

  31. Fletcher CE, Dart DA, Bevan CL. Interplay between steroid signalling and microRNAs: implications for hormone-dependent cancers. Endocr Relat Cancer. 2014;21(5):R409–29. https://doi.org/10.1530/ERC-14-0208.

    Article  PubMed  CAS  Google Scholar 

  32. Gillette TG, Hill JA. Readers, writers and erasers: chromatin as the whiteboard of heart disease. Circ Res. 2015;116(7):1245–53. https://doi.org/10.1161/CIRCRESAHA.116.303630.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007;128(4):635–8. https://doi.org/10.1016/j.cell.2007.02.006.

    Article  PubMed  CAS  Google Scholar 

  34. Granger A, Abdullah I, Huebner F, Stout A, Wang T, Huebner T, et al. Histone deacetylase inhibition reduces myocardial ischemia-reperfusion injury in mice. FASEB J. 2008;22(10):3549–60. https://doi.org/10.1096/fj.08-108548.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Grote P, Wittler L, Hendrix D, Koch F, Währisch S, Beisaw A, et al. The tissue-specific lncRNA Fendrr is an essential regulator of heart and body wall development in the mouse. Dev Cell. 2013;24(2):206–14. https://doi.org/10.1016/j.devcel.2012.12.012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Grunert M, Dorn C, Cui H, Dunkel I, Schulz K, Schoenhals S, et al. Comparative DNA methylation and gene expression analysis identifies novel genes for structural congenital heart diseases. Cardiovasc Res. 2016;112(1):464–77. https://doi.org/10.1093/cvr/cvw195.

    Article  PubMed  CAS  Google Scholar 

  37. Guo X, Su B, Zhou Z, Sha J. Rapid evolution of mammalian X-linked testis microRNAs. BMC Genomics. 2009;10:97. https://doi.org/10.1186/1471-2164-10-97.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Gusterson RJ, Jazrawi E, Adcock IM, Latchman DS. The transcriptional co-activators CREB-binding protein (CBP) and p300 play a critical role in cardiac hypertrophy that is dependent on their histone acetyltransferase activity. J Biol Chem. 2003;278(9):6838–47. https://doi.org/10.1074/jbc.M211762200.

    Article  PubMed  CAS  Google Scholar 

  39. Haas J, Frese KS, Park YJ, Keller A, Vogel B, Lindroth AM, et al. Alterations in cardiac DNA methylation in human dilated cardiomyopathy. EMBO Mol Med. 2013;5(3):413–29. https://doi.org/10.1002/emmm.201201553.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Haemmig S, Simion V, Yang D, Deng Y, Feinberg MW. Long noncoding Rnas in cardiovascular disease, diagnosis, and therapy. Curr Opin Cardiol. 2017;32:776. https://doi.org/10.1097/HCO.0000000000000454.

    Article  PubMed  Google Scholar 

  41. Han P, Li W, Lin C-H, Yang J, Shang C, Nurnberg ST, et al. A long noncoding RNA protects the heart from pathological hypertrophy. Nature. 2014;514(7520):102–6. https://doi.org/10.1038/nature13596.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Hang CT, Yang J, Han P, Cheng H-L, Shang C, Ashley E, et al. Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature. 2010;466(7302):62–7. https://doi.org/10.1038/nature09130.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Hiura Y, Fukushima Y, Kokubo Y, Okamura T, Goto Y, Nonogi H, et al. Effects of the Y chromosome on cardiovascular risk factors in Japanese men. Hypertens Res. 2008;31(9):1687–94. https://doi.org/10.1291/hypres.31.1687.

    Article  PubMed  CAS  Google Scholar 

  44. Hughes JF, Skaletsky H, Brown LG, Pyntikova T, Graves T, Fulton RS, et al. Strict evolutionary conservation followed rapid gene loss on human and rhesus Y chromosomes. Nature. 2012;483(7387):82–6. https://doi.org/10.1038/nature10843.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Ikeda S, Kong SW, Lu J, Bisping E, Zhang H, Allen PD, et al. Altered microRNA expression in human heart disease. Physiol Genomics. 2007;31(3):367–73. https://doi.org/10.1152/physiolgenomics.00144.2007.

    Article  PubMed  CAS  Google Scholar 

  46. Jadhav RR, Ye Z, Huang R-L, Liu J, Hsu P-Y, Huang Y-W, et al. Genome-wide DNA methylation analysis reveals estrogen-mediated epigenetic repression of metallothionein-1 gene cluster in breast cancer. Clin Epigenetics. 2015;7:13. https://doi.org/10.1186/s13148-015-0045-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Kaneda R, Takada S, Yamashita Y, Choi YL, Nonaka-Sarukawa M, Soda M, et al. Genome-wide histone methylation profile for heart failure. Genes Cells. 2009;14(1):69–77. https://doi.org/10.1111/j.1365-2443.2008.01252.x.

    Article  PubMed  CAS  Google Scholar 

  48. Khoury S, Yarows SA, O’Brien TK, Sowers JR. Ambulatory blood pressure monitoring in a nonacademic setting. Effects of age and sex. Am J Hypertens. 1992;5(9):616–23.

    Article  CAS  PubMed  Google Scholar 

  49. Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA, Steinhauser ML, et al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell. 2013;152(3):570–83. https://doi.org/10.1016/j.cell.2013.01.003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Latronico MVG, Condorelli G. MicroRNAs and cardiac pathology. Nat Rev Cardiol. 2009;6(6):419–29. https://doi.org/10.1038/nrcardio.2009.56.

    Article  PubMed  CAS  Google Scholar 

  51. Leader JE, Wang C, Fu M, Pestell RG. Epigenetic regulation of nuclear steroid receptors. Biochem Pharmacol. 2006;72(11):1589–96. https://doi.org/10.1016/j.bcp.2006.05.024.

    Article  PubMed  CAS  Google Scholar 

  52. Lee JT, Strauss WM, Dausman JA, Jaenisch R. A 450 kb transgene displays properties of the mammalian X-inactivation center. Cell. 1996;86(1):83–94.

    Article  CAS  PubMed  Google Scholar 

  53. Li J, Chen X, McClusky R, Ruiz-Sundstrom M, Itoh Y, Umar S, et al. The number of X chromosomes influences protection from cardiac ischaemia/reperfusion injury in mice: one X is better than two. Cardiovasc Res. 2014;102(3):375–84. https://doi.org/10.1093/cvr/cvu064.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. McCarthy MI, Hirschhorn JN. Genome-wide association studies: potential next steps on a genetic journey. Hum Mol Genet. 2008;17(R2):R156–65. https://doi.org/10.1093/hmg/ddn289.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. McCarthy MM, Auger AP, Bale TL, De Vries GJ, Dunn GA, Forger NG, et al. The epigenetics of sex differences in the brain. J Neurosci. 2009;29(41):12815–23. https://doi.org/10.1523/JNEUROSCI.3331-09.2009.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Menazza S, Murphy E. The expanding complexity of estrogen receptor signaling in the cardiovascular system. Circ Res. 2016;118(6):994–1007. https://doi.org/10.1161/CIRCRESAHA.115.305376.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol. 2013;13(10):709–21. https://doi.org/10.1038/nri3520.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Morgan CP, Bale TL. Sex differences in microRNA regulation of gene expression: no smoke, just miRs. Biol Sex Differ. 2012;3(1):22. https://doi.org/10.1186/2042-6410-3-22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Movassagh M, Choy M-K, Knowles DA, Cordeddu L, Haider S, Down T, et al. Distinct epigenomic features in end-stage failing human hearts. Circulation. 2011;124(22):2411–22. https://doi.org/10.1161/CIRCULATIONAHA.111.040071.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Nikitina T, Shi X, Ghosh RP, Horowitz-Scherer RA, Hansen JC, Woodcock CL. Multiple modes of interaction between the methylated DNA binding protein MeCP2 and chromatin. Mol Cell Biol. 2007;27(3):864–77. https://doi.org/10.1128/MCB.01593-06.

    Article  PubMed  CAS  Google Scholar 

  61. Norris DP, Patel D, Kay GF, Penny GD, Brockdorff N, Sheardown SA, Rastan S. Evidence that random and imprinted Xist expression is controlled by preemptive methylation. Cell. 1994;77(1):41–51.

    Article  CAS  PubMed  Google Scholar 

  62. Ooi JYY, Tuano NK, Rafehi H, Gao X-M, Ziemann M, Du X-J, El-Osta A. HDAC inhibition attenuates cardiac hypertrophy by acetylation and deacetylation of target genes. Epigenetics. 2015;10(5):418–30. https://doi.org/10.1080/15592294.2015.1024406.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Papageorgiou N, Tousoulis D, Androulakis E, Siasos G, Briasoulis A, Vogiatzi G, et al. The role of microRNAs in cardiovascular disease. Curr Med Chem. 2012;19(16):2605–10.

    Article  CAS  PubMed  Google Scholar 

  64. Papait R, Cattaneo P, Kunderfranco P, Greco C, Carullo P, Guffanti A, et al. Genome-wide analysis of histone marks identifying an epigenetic signature of promoters and enhancers underlying cardiac hypertrophy. Proc Natl Acad Sci U S A. 2013;110(50):20164–9. https://doi.org/10.1073/pnas.1315155110.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Papait R, Serio S, Pagiatakis C, Rusconi F, Carullo P, Mazzola M, et al. Histone methyltransferase G9a is required for cardiomyocyte homeostasis and hypertrophy. Circulation. 2017;136(13):1233–46. https://doi.org/10.1161/CIRCULATIONAHA.117.028561.

    Article  PubMed  CAS  Google Scholar 

  66. Pasquinelli AE. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet. 2012;13(4):271–82. https://doi.org/10.1038/nrg3162.

    Article  PubMed  CAS  Google Scholar 

  67. Queirós AM, Eschen C, Fliegner D, Kararigas G, Dworatzek E, Westphal C, et al. Sex- and estrogen-dependent regulation of a miRNA network in the healthy and hypertrophied heart. Int J Cardiol. 2013;169(5):331–8. https://doi.org/10.1016/j.ijcard.2013.09.002.

    Article  PubMed  Google Scholar 

  68. Rafehi H, Balcerczyk A, Lunke S, Kaspi A, Ziemann M, Kn H, et al. Vascular histone deacetylation by pharmacological HDAC inhibition. Genome Res. 2014;24(8):1271–84. https://doi.org/10.1101/gr.168781.113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Rosa-Garrido M, Chapski DJ, Schmitt AD, Kimball TH, Karbassi E, Monte E, et al. High resolution mapping of chromatin conformation in cardiac myocytes reveals structural remodeling of the epigenome in heart failure. Circulation. 2017;136:1613. https://doi.org/10.1161/CIRCULATIONAHA.117.029430.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Rosales W, Carulla J, GarcĂ­a J, Vargas D, Lizcano F. Role of histone demethylases in cardiomyocytes induced to hypertrophy. Biomed Res Int. 2016;2016(2634976):1. https://doi.org/10.1155/2016/2634976.

    Article  CAS  Google Scholar 

  71. Santos-Rebouças CB, Fintelman-Rodrigues N, Jensen LR, Kuss AW, Ribeiro MG, Campos M, et al. A novel nonsense mutation in KDM5C/JARID1C gene causing intellectual disability, short stature and speech delay. Neurosci Lett. 2011;498(1):67–71. https://doi.org/10.1016/j.neulet.2011.04.065.

    Article  PubMed  CAS  Google Scholar 

  72. Sharma S, Eghbali M. Influence of sex differences on microRNA gene regulation in disease. Biol Sex Differ. 2014;5(1):3. https://doi.org/10.1186/2042-6410-5-3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Shin S, Janknecht R. Activation of androgen receptor by histone demethylases JMJD2A and JMJD2D. Biochem Biophys Res Commun. 2007;359(3):742–6. https://doi.org/10.1016/j.bbrc.2007.05.179.

    Article  PubMed  CAS  Google Scholar 

  74. Shpargel KB, Sengoku T, Yokoyama S, Magnuson T. UTX and UTY demonstrate histone demethylase-independent function in mouse embryonic development. PLoS Genet. 2012;8(9):e1002964. https://doi.org/10.1371/journal.pgen.1002964.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Snijders Blok L, Madsen E, Juusola J, Gilissen C, Baralle D, Reijnders MRF, et al. Mutations in DDX3X are a common cause of unexplained intellectual disability with gender-specific effects on Wnt signaling. Am J Hum Genet. 2015;97(2):343–52. https://doi.org/10.1016/j.ajhg.2015.07.004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403(6765):41–5. https://doi.org/10.1038/47412.

    Article  PubMed  CAS  Google Scholar 

  77. Suzuki MM, Bird A. DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet. 2008;9(6):465–76. https://doi.org/10.1038/nrg2341.

    Article  PubMed  CAS  Google Scholar 

  78. Trivedi CM, Luo Y, Yin Z, Zhang M, Zhu W, Wang T, et al. Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med. 2007;13(3):324–31. https://doi.org/10.1038/nm1552.

    Article  PubMed  Google Scholar 

  79. Umar S, Cunningham CM, Itoh Y, Moazeni S, Vaillancourt M, Sarji S, et al. The Y chromosome plays a protective role in experimental hypoxic pulmonary hypertension. Am J Respir Crit Care Med. 2017. https://doi.org/10.1164/rccm.201707-1345LE.

  80. Umer M, Herceg Z. Deciphering the epigenetic code: an overview of DNA methylation analysis methods. Antioxid Redox Signal. 2013;18(15):1972–86. https://doi.org/10.1089/ars.2012.4923.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Valencia-Morales M d P, Zaina S, Heyn H, Carmona FJ, Varol N, Sayols S, et al. The DNA methylation drift of the atherosclerotic aorta increases with lesion progression. BMC Med Genet. 2015;8:7. https://doi.org/10.1186/s12920-015-0085-1.

    Article  CAS  Google Scholar 

  82. Waddington CH. The epigenotype. Endeavour. 1942;1:18–20.

    Google Scholar 

  83. Waddington CH. The strategy of the genes, Routledge library editions: 20th century science. London: Routledge; 2014.

    Book  Google Scholar 

  84. Wang H, Maurano MT, Qu H, Varley KE, Gertz J, Pauli F, et al. Widespread plasticity in CTCF occupancy linked to DNA methylation. Genome Res. 2012;22(9):1680–8. https://doi.org/10.1101/gr.136101.111.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Wang K, Liu F, Zhou L-Y, Long B, Yuan S-M, Wang Y, et al. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res. 2014a;114(9):1377–88. https://doi.org/10.1161/CIRCRESAHA.114.302476.

    Article  PubMed  CAS  Google Scholar 

  86. Wang K, Long B, Zhou L-Y, Liu F, Zhou Q-Y, Liu C-Y, et al. CARL lncRNA inhibits anoxia-induced mitochondrial fission and apoptosis in cardiomyocytes by impairing miR-539-dependent PHB2 downregulation. Nat Commun. 2014b;5:3596. https://doi.org/10.1038/ncomms4596.

    Article  PubMed  CAS  Google Scholar 

  87. Wang Z, Zhang X-J, Ji Y-X, Zhang P, Deng K-Q, Gong J, et al. The long noncoding RNA Chaer defines an epigenetic checkpoint in cardiac hypertrophy. Nat Med. 2016;22(10):1131–9. https://doi.org/10.1038/nm.4179.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Wu X, Zhang Y. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat Rev Genet. 2017;18(9):517–34. https://doi.org/10.1038/nrg.2017.33.

    Article  PubMed  CAS  Google Scholar 

  89. Xiao ZG, Shen J, Zhang L, Li LF, Li MX, Hu W, et al. The roles of histone demethylase UTX and JMJD3 (KDM6B) in cancers: current progress and future perspectives. Curr Med Chem. 2016;23:3687–96.

    Article  CAS  PubMed  Google Scholar 

  90. Yamauchi Y, Riel JM, Stoytcheva Z, Ward MA. Two Y genes can replace the entire Y chromosome for assisted reproduction in the mouse. Science. 2014;343(6166):69–72. https://doi.org/10.1126/science.1242544.

    Article  PubMed  CAS  Google Scholar 

  91. Ying AK, Hassanain HH, Roos CM, Smiraglia DJ, Issa JJ, Michler RE, et al. Methylation of the estrogen receptor-alpha gene promoter is selectively increased in proliferating human aortic smooth muscle cells. Cardiovasc Res. 2000;46(1):172–9.

    Article  CAS  PubMed  Google Scholar 

  92. Yoon S, Eom GH. HDAC and HDAC inhibitor: from Cancer to cardiovascular diseases. Chonnam Med J. 2016;52(1):1–11. https://doi.org/10.4068/cmj.2016.52.1.1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Zhang CL, McKinsey TA, Chang S, Antos CL, Hill JA, Olson EN. Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell. 2002;110(4):479–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang Q-J, Chen H-Z, Wang L, Liu D-P, Hill JA, Liu Z-P. The histone trimethyllysine demethylase JMJD2A promotes cardiac hypertrophy in response to hypertrophic stimuli in mice. J Clin Invest. 2011;121(6):2447–56. https://doi.org/10.1172/JCI46277.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Zhang X, Ho S-M. Epigenetics meets endocrinology. J Mol Endocrinol. 2011;46(1):R11–32. https://doi.org/10.1677/JME-10-0053.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Zhao J, Sun BK, Erwin JA, Song J-J, Lee JT. Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science (New York, N.Y.). 2008;322(5902):750–6. https://doi.org/10.1126/science.1163045.

    Article  CAS  Google Scholar 

  97. Zhong J, Agha G, Baccarelli AA. The role of DNA methylation in cardiovascular risk and disease: methodological aspects, study design, and data analysis for epidemiological studies. Circ Res. 2016;118(1):119–31. https://doi.org/10.1161/CIRCRESAHA.115.305206.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mansoureh Eghbali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cunningham, C.M., Eghbali, M. (2018). An Introduction to Epigenetics in Cardiovascular Development, Disease, and Sexualization. In: Kerkhof, P., Miller, V. (eds) Sex-Specific Analysis of Cardiovascular Function. Advances in Experimental Medicine and Biology, vol 1065. Springer, Cham. https://doi.org/10.1007/978-3-319-77932-4_2

Download citation

Publish with us

Policies and ethics