Skip to main content

Arterial Wall Properties in Men and Women: Hemodynamic Analysis and Clinical Implications

  • Chapter
  • First Online:
Book cover Sex-Specific Analysis of Cardiovascular Function

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1065))

Abstract

The properties of arterial walls are dictated by their underlying structure, which is responsible for the adequate perfusion of conduit branching arteries and their vascular beds. Beginning with the mechanobiology of arteries in terms of their composition and individual contributions to overall viscoelastic behavior in men and women, pressure–flow relations are analyzed and noted in terms of sex differences. Hemodynamic function in terms of indices of vascular stiffness—such as pressure–strain elastic modulus, pulse wave velocity, augmentation index, and cardio–ankle vascular index—are evaluated. They all showed differences between the sexes, and these differences also were shown among people of different cultures. Recent studies also showed, in heart failure patients, a comparatively greater increase in peripheral resistance and a greater decreased arterial compliance in women. Wave separation into forward and reflected waves allows elucidation of mechanical and drug-treated similarities and differences in induced hypertension. This may provide insight into treatment strategy in terms of improving mechanobiology and designing drug therapy for the sexes. Finally, modeling studies are useful in identifying how arterial compliance and its pressure dependence can be better used in differentiating aging- and hypertension-induced changes that differentially affect the sexes.

Arterial system with waveforms. Artwork by Piet Michiels, Leuven, Belgium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen CH, Nevo E, Fetics B, Pak PH, Yin FC, Maughan WL, et al. Estimation of central aortic pressure waveform by mathematical transformation of radial tonometry pressure. Circulation. 1977;95:1827–36.

    Article  Google Scholar 

  2. Coutinho T, Borlaug BA, Pellikka PA, Turner ST, Kullo IJ. Sex differences in arterial stiffness and ventricular-arterial interactions. J Am Coll Cardiol. 2013;61:96–103.

    Article  PubMed  Google Scholar 

  3. Cox RH. Arterial wall mechanics and composition and the effects of smooth muscle activation. Am J Physiol. 1975;229:807–12.

    PubMed  CAS  Google Scholar 

  4. D’Armiento J. Decreased elastin in vessel walls puts the pressure on. J Clin Invest. 2003;112(9):1308–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Devereux RB, de Simone G, Ganau A, Koren MJ, Mensah GA, Roman MJ. Left ventricular hypertrophy and hypertension. Clin Exp Hypertens. 1993;15:1025–32.

    Article  CAS  PubMed  Google Scholar 

  6. Dobrin PB, Mrkvicka R. Failure of elastin or collagen as possible critical connective tissue alterations underlying aneurysmal dilatation. Cardiovasc Surg. 1994;2:484–8.

    PubMed  CAS  Google Scholar 

  7. Drzewiecki G, Field S, Mubarak I, Li JK-J. Effect of vascular growth pattern on lumen area and compliance using a novel pressure-area model for collapsible vessels. Am J Physiol (Heart & Circ Physiol). 1997;273:H2030–43.

    Article  CAS  Google Scholar 

  8. Dubin RF, Guajardo I, Ayer A, Mills C, Donovan C, Beussink L, et al. Associations of macro- and microvascular endothelial dysfunction with subclinical ventricular dysfunction in end-stage renal disease. Hypertension. 2016;68:913–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Duprez D, Jacobs DR Jr. Arterial stiffness and left ventricular diastolic function. Does sex matter? Hypertension. 2012;60:283–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Farhat MY, Lavigne MC, Ramwell PW. The vascular protective effects of estrogen. FASEB J. 1996;10:615–24.

    Article  CAS  PubMed  Google Scholar 

  11. Frank O. Die Grundform des arteriellen pulses. Z Biol. 1899;37:483–526.

    Google Scholar 

  12. Guajardo I, Ayer A, AD Johnson PG, Mills C, Donovan C, Scherzer R, et al. Sex differences in vascular dysfunction and cardiovascular outcomes: the cardiac, endothelial function, and arterial stiffness in ESRD (CERES) study. Hemodial Int. 2017;22:93. https://doi.org/10.1111/hdi.12544.

    Article  PubMed  Google Scholar 

  13. Hansen F, P Mangell B, Sonesson TL. Diameter and compliance in the human common carotid artery – variations with age and sex. Ultrasound Med Biol. 1995;21:l–9.

    Article  Google Scholar 

  14. Hayashi K, Handa H, Nagasawa S, Okumura A, Moritake K. Stiffness and elastic behavior of human intracranial and extracranial arteries. J Biomech. 1980;13:175–84.

    Article  CAS  PubMed  Google Scholar 

  15. Hayward CS, Kelly RP. Gender-related differences in the central arterial pressure waveform. J Am Coll Cardiol. 1997;30:1863–71.

    Article  CAS  PubMed  Google Scholar 

  16. Hughes WE, Spartano NL, Lefferts WK, Augustine JA, Heffernan KS. Sex differences in noninvasive estimates of left ventricular pressure energetics but not myocardial oxygen demand in young adults. Artery Research. 2014;8:197–204.

    Article  Google Scholar 

  17. Karamanoglu M, O’Rourke MF, Avolio AP, Kelly RP. An analysis of the relationship between central aortic and peripheral upper limb pressure waves in man. Euro Heart J. 1993;14:160–7.

    Article  CAS  Google Scholar 

  18. Kawasaki T, Sasayama S, Yagi S, Asakawa T, Hirai T. Non-invasive assessment of the age related changes in stiffness of major branches of the human arteries. Cardiovasc Res. 1987;21:678–87.

    Article  CAS  PubMed  Google Scholar 

  19. Kerkhof PLM, Kresh JY, Li JK-J, Heyndrickx GR. Left ventricular volume regulation in heart failure with preserved ejection fraction. Physiol Report. 2013;1(2):1–10.

    Article  Google Scholar 

  20. Kerkhof PLM, GR Heyndrickx, JK-J Li. Hemodynamic determinants and ventriculo-arterial coupling are sex-associated in heart failure patients. In: Proceeding of 38th annual international conference of the IEEE engineering in medicine and biology society, IEEE X-plore; 2016.

    Google Scholar 

  21. Kim H, Kim M, W Shim SO, Kim M, Park SM, Kim YH, et al. Sex difference in the association between brachial pulse pressure and coronary artery disease: the Korean women’s chest pain registry (KoROSE). J Clin Hypertens (Greenwich). 2017;19:38–44.

    Article  Google Scholar 

  22. Kim J, Park DS Kim JB, Kim KS, Jeong JW, Park JC, Oh BH, et al. On behalf of the KAAS investigators. Gender difference in arterial stiffness in a multicenter cross-sectional study: the Korean Arterial Aging Study (KAAS). Pulse. 2014;2:11–7.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kool MJF, van Merode T, Reneman RS, Hoeks APG, Struijker Boudier HA. Evaluation of reproducibility of a vessel wall movement detector system for assessment of large artery properties. Cardiovasc Res. 1994;28:610–4.

    Article  CAS  PubMed  Google Scholar 

  24. Li JK-J. Pressure-derived flow: a new method. IEEE Trans Biomed Eng BME. 1983;30:244–6.

    Article  CAS  Google Scholar 

  25. Li JK-J. Regional left ventricular mechanics during myocardial ischemia. In: Sideman S, editor. Simulation and modeling of the cardiac system. Boston: Martinus Nijhoff Publishers; 1987. p. 451–62.

    Google Scholar 

  26. Li JK-J. Feedback effects in heart-arterial system interaction. In: Sideman S, Beyar R, editors. Interactive phenomenon in the cardiac system. New York: Plenum; 1993. p. 325–33.

    Chapter  Google Scholar 

  27. Li JK-J. A new description of arterial function: the compliance-pressure loop. Angiology. J Vascular Diseas. 1998;49:543–8.

    CAS  Google Scholar 

  28. Li JK-J. The arterial circulation: physical principles and clinical applications. New York: Springer; 2000.

    Book  Google Scholar 

  29. Li JK-J. Dynamics of the vascular system. Singapore: World Scientific Publishers; 2004.

    Book  Google Scholar 

  30. Li JK-J, Cui T, Drzewiecki G. A nonlinear model of the arterial system incorporating a pressure-dependent compliance. IEEE Trans Biomed Eng BME. 1990;37:673–8.

    Article  CAS  Google Scholar 

  31. Li JK-J, Zhu JY, Nanna M. Computer modeling of the effects of aortic valve stenosis and arterial system afterload on left ventricular hypertrophy. Comput Biol Med. 1997;27:477–85.

    Article  CAS  PubMed  Google Scholar 

  32. Li JK-J, Zhu Y, O’Hara D, Khaw K. Allometric hemodynamic analysis of isolated systolic hypertension and aging. Cardiovasc Eng. 2007;7:135–9.

    Article  PubMed  Google Scholar 

  33. Li JK-J, Zhu Y, Geipel PS. Pulse pressure, arterial compliance and wave reflection under differential vasoactive and mechanical loading. Cardiovasc Eng. 2010;10:170–5.

    Article  PubMed  Google Scholar 

  34. Li JK-J, Atlas G. Left ventricle–arterial system interaction in heart failure. Clin Med Insight: Cardiol. 2015;9(Suppl 1):93–9. https://doi.org/10.4137/CMC.S18742.

    Article  CAS  Google Scholar 

  35. Li JK-J, Zhu Y, Noordergraaf A. A comparative approach to analysis and modeling of cardiovascular function. Molecular, cellular, and tissue engineering. In: Bronzino JD, Peterson DR, editors. Biomedical engineering handbook, 4th ed. Chapter 26, pp26. London/New York: CRC Press/Boca Raton; 2015. p. 1–12.

    Google Scholar 

  36. Li JK-J, Zhu Y. Arterial compliance and its pressure dependence in hypertension and vasodilation. Angiology, J Vasc Diseas. 1994;45:113–7.

    CAS  Google Scholar 

  37. Liu C, Zhao L, Liu C. Effects of blood pressure and sex on the change of wave reflection: evidence from Gaussian fitting method for radial artery pressure waveform. PLoS One. 2014;9(11):e112895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu Z, Brin KP, Yin FC. Estimation of total arterial compliance: an improved method and evaluation of current methods. Am J Phys. 1986;251:H588–600.

    Article  CAS  Google Scholar 

  39. Nishiwaki M, Kurobe K, Kiuchi A, Nakamura T. N Matsumoto. Sex differences in flexibility-arterial stiffness relationship and its application for diagnosis of arterial stiffening: a cross-sectional observational study. PLoS One. 2014; https://doi.org/10.1371/journal.pone.0113646.

  40. Noordergraaf A. Circulatory system dynamics. New York: Academic; 1978.

    Google Scholar 

  41. Patel A, Li JK-J. Aortic pressure estimation using blind identification approach on single input multiple output non-linear Wiener systems. IEEE Trans Biomed Eng. 2017a. https://doi.org/10.1109/TBME.2017.2688425

  42. Patel A, Li JK-J. Validation of a novel nonlinear black box Wiener System model for arterial pulse transmission. Comput Biol Med. 2017b;88:11. https://doi.org/10.1016/j.compbiomed.2017.06.020.

    Article  PubMed  Google Scholar 

  43. Phan TS, Li JK-J, Segers P, Reddy-Koppula M, Akers SR, Kuna ST, et al. Aging is associated with an earlier arrival of reflected waves without a distal shift in reflection sites. J Am Heart Assoc. 2016;5:e003733. https://doi.org/10.1161/JAHA.116.003733.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Qiu H, Depre C, Ghosh K, Resuello RG, Natividad F, Rossi F, et al. Mechanism of gender-specific differences in aortic stiffness with aging in nonhuman primates. Circulation. 2007;116:669–76.

    Article  PubMed  Google Scholar 

  45. Russo C, Jin Z, Palmieri V, Homma S, Rundek T, Elkind MSV, et al. Arterial stiffness and wave reflection sex differences and relationship with left ventricular diastolic function. Hypertension. 2012;60:362–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shirai K, Utino J, Otsuka K, Takata M. A novel blood pressure-independent arterial wall stiffness parameter; Cardio-Ankle Vascular Index (CAVI). J Atheroscler Thromb. 2006;13:101–7.

    Article  PubMed  Google Scholar 

  47. Sonesson B, Hansen F, Stale H, Lanne T. Compliance and diameter in the human abdominal aorta- the influence of age and sex. Eur J Vasc Surg. 1993;7:690–7.

    Article  CAS  PubMed  Google Scholar 

  48. Stoner L, Faulknera J, Westruppb N, Lambrick D. Sexual differences in central arterial wave reflection are evident in prepubescent children. J Hypertens. 2015;33:304–7.

    Article  CAS  PubMed  Google Scholar 

  49. Tomiyama H, Yamashina A, Arai T, Hirose K, Koji Y, et al. Influences of age and gender on results of noninvasive brachial-ankle pulse wave velocity measurement–a survey of 12517 subjects. Atherosclerosis. 2003;166:303–9.

    Article  CAS  PubMed  Google Scholar 

  50. Van der Heijden-Spek JJ, Staessen JA, Fagard RH, Hoeks AP, Struijker Boudier HA, Van Bortel LM. Effect of age on brachial Artery Wall properties differs from the aorta and is gender dependent. A population study. Hypertension. 2000;35:637–42.

    Article  PubMed  Google Scholar 

  51. Villard C, Eriksson P, Swedenborg J, Hultgren R. Differences in elastin and elastolytic enzymes between men and women with abdominal aortic aneurysm. Aorta. 2014;2:179–85.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wagenseil JE, Mecham RP. Elastin in large artery stiffness and hypertension. J Cardiovas Translat Res. 2012;5:264–73.

    Article  Google Scholar 

  53. Weizsacker H.W. and K. Pascal. Anisotropic passive properties of blood vessel walls. In: Cardiovascular system dynamics: models and measurements, pp. 347–362. Eds. T. Kenner, R. Busse, H. Hinghofer-Szalkay, Plenum, 1982.

    Chapter  Google Scholar 

  54. Wells SM, Langeille BL, Adamson SL. In vivo and in vitro mechanical properties of the sheep in thoracic aorta in the perinatal period and adulthood. Am J Phys. 1998;274:H1749–60.

    CAS  Google Scholar 

  55. Zhang H, Li JK-J. A novel wave reflection model of the human arterial system. Cardiovasc Eng. 2009;9:39–48.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John K.-J. Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, J.KJ. (2018). Arterial Wall Properties in Men and Women: Hemodynamic Analysis and Clinical Implications. In: Kerkhof, P., Miller, V. (eds) Sex-Specific Analysis of Cardiovascular Function. Advances in Experimental Medicine and Biology, vol 1065. Springer, Cham. https://doi.org/10.1007/978-3-319-77932-4_19

Download citation

Publish with us

Policies and ethics