Skip to main content

Part of the book series: SpringerBriefs in Molecular Science ((BRIESFHISTCHEM))

  • 274 Accesses

Abstract

Passing by Währingerstraße in Vienna, one encounters a gray, roughly triangular building block, the chemical, mathematical and physical institutes (in alphabetical order) of the University of Vienna . There is a simple monument in front of the entrance to Währingerstraße 38—a square with a stylized male figure and the words “Plus Lucis ”—“more light.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Komorek [1].

  2. 2.

    Baumgartner [2].

  3. 3.

    Both England and Scotland boasted of a long tradition in pneumatic chemistry through the work of renowned early researchers such as Joseph Black (1728–99), Robert Boyle (1627–91), Joseph Priestley (1733–1804), Henry Cavendish (1731–1810), and Stephen Hales (1677–1761).

  4. 4.

    https://en.wikipedia.org/wiki/Jean-Pierre_Minckelers (last accessed 15 January 2018).

  5. 5.

    Thomson [3].

  6. 6.

    https://www.deutsche-biographie.de/ppn118726145.html#ndbcontent (last accessed 15 January 2018).

  7. 7.

    http://www.cesa-project.eu/en/lexicon/authors/johann-joseph-von-prechtl (last accessed 15 January 2018).

  8. 8.

    MacIsaac et al. [4].

  9. 9.

    Sedlacek [5].

  10. 10.

    Brewster [6].

  11. 11.

    https://en.wikipedia.org/wiki/Limelight (last accessed 15 January 2018).

  12. 12.

    Cruickshank [7].

  13. 13.

    Harvey [8].

  14. 14.

    Mason [9].

  15. 15.

    Wood [10].

  16. 16.

    Asano et al. [11].

  17. 17.

    Greffet et al. [12].

  18. 18.

    White [13].

  19. 19.

    Phillips [14].

  20. 20.

    Ivey [15].

  21. 21.

    Wolters and Roslin [16].

  22. 22.

    Gentsch [17].

  23. 23.

    Gentsch [18].

  24. 24.

    Other inventors had tried applying slurries of salts to fabric, but these networks were unsuccessful because of uneven distribution of the incandescent material and and the fragility of their bonds to one another.

  25. 25.

    Jørgensen et al. [19].

  26. 26.

    Auer von Welsbach [20].

  27. 27.

    Auer von Welsbach [21].

  28. 28.

    D’Ans [23].

  29. 29.

    One Hefnerkerze has a light output of 0.920 cd. The unit is based on the Hefner lamp, the luminosity standard in the late 19th and early 20th centuries in Scandinavia and the German-speaking countries. Palaz [24].

  30. 30.

    The gulden was the unit of currency in the Austro-Hungarian Empire until 1892; 1,000,000 gulden had an 1890-dollar value of about $414,000.

  31. 31.

    Sedlacek [25].

  32. 32.

    Chimneys were used to enclose the mantle and allow the gas flame to impinge upon it in a controlled space.

  33. 33.

    The Decision of Justice Wills in the English Welsbach Suit. In Gentsch [26].

  34. 34.

    Jørgensen [27].

  35. 35.

    Jørgensen [28].

  36. 36.

    Commercially viable deposits can only be found along the seashores in countries that escaped the erosion due to prehistoric glaciers, namely the Brazilian coast and the coastlines of North and South Carolina. Furthermore, beaches are constantly subjected to the vagaries of weather and tide, so the localities of the deposits are considerably unstable, even from day to day. Nitze [29]. In Gentsch [30].

  37. 37.

    Habashi [31].

  38. 38.

    Ives et al. [32].

  39. 39.

    Barrows [33].

  40. 40.

    Stock [34].

  41. 41.

    Ludwig Camillo Haitinger was the precocious scion of an old Viennese family. He published his first paper at the age of 17, a treatise on the direct nitration of aliphatic compounds. In 1879 he completed his “Matura” examination and from 1880 on he worked as Adolph Lieben’s private assistant. He and Lieben jointly determined the exact structure of chelidonic acid. He also discovered a number of cases of observed tautomerism. With the advent of the Welsbach mantle, he entered wholeheartedly into the venture and took over the management of the company named “Welsbach-Williams Ltd.” in Vienna-Atzgersdorf. In 1893, when the gas mantles were already being used on a large scale, he became Director of Gasglühlicht AG. Vienna. Haitinger’s main contribution to the science of the mantles was chiefly in the recognition of the importance of adding small amounts of certain annealing oxides to enhance the luminosity of the lamps. He remained Carl Auer von Welsbach’s trusted assistant throughout the rest of his career.

  42. 42.

    Gasometers were gas storage containers at atmospheric pressure and ambient temperature.

  43. 43.

    Adunka [35].

  44. 44.

    Estimated candlepower for the Welsbach lights, depending on their form, was between 75 and 100 candlepower, with an estimated lifetime of not less than 1000 h.

  45. 45.

    The [New York] City Record (1906) 34, Part 2:1441.

  46. 46.

    Report of the Franklin Institute [36]. This report was quite thorough in that it gave a brief history of the development of incandescent gas lighting, including the work of two Americans, W. M. Jackson in 1881 and Charles M. Lungren in 1881, with additional patents as late as 1887. In its description of Auer’s contributions, they make special note of the great attention to detail he gave in his lamp development to make its use practical. It also gives the numbers and dates of Auer’s most important U.S. patents.

  47. 47.

    Jørgensen [37].

  48. 48.

    Rubens [38].

  49. 49.

    Rubens and Aschkinass [39].

  50. 50.

    Kangro [40].

  51. 51.

    Lecture given at the 32nd annual gathering of the Deutschen Vereins von Gas- und Wasserfachmännern in Kiel on 28 June, 1892 (as cited in Hartwig G (1894) Das Gasglühlicht. Hellmuth Henkler’s Verlag, Dresden, p. 49).

  52. 52.

    Sedlacek [41].

  53. 53.

    The title “Freiherr” is equivalent to “Baron” in English.

  54. 54.

    Feldhaus [42].

References

  1. Komorek K (2011) Plus lucis. In Carl Freiherr Auer von Welsbach (1858–1929). Symposium anlässlich des 150. Geburtstages. Wien, 4. Juni 2008 (2011) Österreichischen Akademie der Wissenschaften, Wien, Austria, pp 45–49

    Google Scholar 

  2. Baumgartner E (1996) Carl Auer von Welsbach: a pioneer in the industrial application of rare earths. In Evans CH (ed) (1996) Episodes from the history of the rare earth elements. Kluwer, Dordrecht, The Netherlands, pp 113–129

    Chapter  Google Scholar 

  3. Thomson J (2003) The Scot who lit the world: The story of William Murdoch, the inventor of gas lighting. Janet Thomson, Glasgow

    Google Scholar 

  4. MacIsaac D, Kanner G, Anderson G (1999) Basic physics of the incandescent lamp (lightbulb). Phys Teach 37:520–525

    Article  Google Scholar 

  5. Sedlacek F (1934) Auer von Welsbach. Österreichisches Forschungsinstitut für Geschickte der Technik in Wien. Blätter für Geschichte der Technik, Zweites Heft. Erhard L (ed) Julius Springer Verlag, Wien, pp 21–22

    Google Scholar 

  6. Brewster D (1820) On a singular luminous property of wood, &c., steeped in solutions of Lime and Magnesia. Edinb Phil J 3:343–344

    Google Scholar 

  7. Cruickshank A (1839) British Patent Specifications, No. 8141

    Google Scholar 

  8. Harvey EN (1957) A history of luminescence from the earliest times until 1900. The American Philosophical Society, Philadelphia, p vii

    Google Scholar 

  9. Mason DM (1967) Candoluminescence. Proc Am Chem Soc Div Fuel Chem 11(2):540–554. http://web.anl.gov/PCS/acsfuel/preprint%20archive/Files/11_2_MIAMI2_04-67_0540.pdf. Last accessed 15 Jan 2018

  10. Wood RW (1931) Selective thermal radiation of colored and pure fused quartz. Phys Rev 38:487

    Article  CAS  Google Scholar 

  11. Asano T, Suemitsu M, Hashimoto K, De Zoysa M, Shibahara T, Tsutsumi T, Noda S (2016) Near-infrared–to–visible highly selective thermal emitters based on an intrinsic semiconductor. Sci Adv 2(12):e1600499. https://doi.org/10.1126/sciadv.1600499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Greffet J-J, Carminati R, Joulain K, Mulet J-P, Mainguy S, Chen Y (2002) Coherent emission of light by thermal sources. Nature 416:61–64

    Article  CAS  PubMed  Google Scholar 

  13. White WB (1990) Photoluminescence, candoluminescence, and radical recombination luminescence of minerals. In: Coyne LM, McKeever SWS, Blake DF (eds) Spectroscopic characterization of minerals and their surfaces. American Chemical Society, Washington, D.C., pp 118–134

    Google Scholar 

  14. Phillips ML (1928) Visible radiation characteristics of incandescent oxides. Phys Rev 32:832–839

    Article  CAS  Google Scholar 

  15. Ivey HF (1974) Candoluminescence and radical-excited luminescence. J Lumin 8:271–307

    Article  CAS  Google Scholar 

  16. Wolters W, Roslin J (1881) Vienna Patent No. 17,786, June

    Google Scholar 

  17. Gentsch W (1896) The incandescent gas light: Its history, character and operation. Progressive Age Publishing Co., New York, pp 1–7 and 20–35

    Google Scholar 

  18. Gentsch W (1896) The incandescent gas light: Its history, character and operation. Progressive Age Publishing Co., New York, pp 9–10

    Google Scholar 

  19. Jørgensen CK, Bill H, Reisfeld R (1981) Candoluminescence of rare earths. J Lumin 24(25):91–94

    Article  Google Scholar 

  20. Auer von Welsbach C (1901) On the history of the invention of the gas incandescent light. Lecture given at the 41st Annual General Meeting of the German Association of Gas and Water Professionals, Vienna. J Gasbeleucht Verw Beleuchtungsarten Wasserversorg 44:661–664

    Google Scholar 

  21. Auer von Welsbach C (1902) Chem News 85:254–256

    Google Scholar 

  22. Welsbach CA (1885) Austrian patent, 27 October; (1889) US399174A: Incandescent Device

    Google Scholar 

  23. D’Ans J (1931) Carl Freiherr Auer von Welsbach. Ber Deutsch Chem Ges A 64(5):63–64

    Google Scholar 

  24. Palaz A (1894) A treatise on industrial photometry with special attention to electric lighting. Van Nostrand, New York, pp 135–139

    Google Scholar 

  25. Sedlacek F (1934) Auer von Welsbach. Österreichisches Forschungsinstitut für Geschickte der Technik in Wien. Blätter für Geschichte der Technik, Zweites Heft. Erhard L (ed) Julius Springer Verlag, Wien, pp 28–35

    Google Scholar 

  26. Gentsch W (1896) The incandescent gas light: its history, character and operation. Progressive Age Publishing Co., New York, pp 87–107

    Google Scholar 

  27. Jørgensen CK (1970) Electron transfer spectra. Prog Inorg Chem 12:101–158

    Google Scholar 

  28. Jørgensen CK (1976) Narrow band thermoluminescence (candoluminescence) of rare earths in Auer mantles. Struct Bond 25:1–21

    Article  Google Scholar 

  29. Nitze HBC (1896) The monazite deposits of North and South Carolina. In Gentsch W (1896) The incandescent gas light: Its history , character and operation. Progressive Age Publishing Co., New York, pp. 77–81

    Google Scholar 

  30. Gentsch (1896) The incandescent gas light: Its history, character and operation. Progressive Age Publishing Co., New York, pp. 77–81

    Google Scholar 

  31. Habashi F (2000) Robert Bunsen and the rare earths industry. In: Bautista RG, Mishna B (eds) Rare earths and actinides: science, technology and applications IV. The Minerals, Metals and Materials Society, Pittsburgh, pp 1–10

    Google Scholar 

  32. Ives HE, Kingsbury EF, Karrer E (1918) Physical study of the Welsbach mantle. J Franklin Inst 186: 401–438 and 585–625

    Google Scholar 

  33. Barrows GS (1910) The work of Dr. C. A. von Welsbach in the field of artificial illuminants. Illum Eng 3:499–502

    CAS  Google Scholar 

  34. Stock J (1991) Carl Auer von Welsbach and the development of incandescent gas lighting. J Chem Educ 68:801–803

    Article  CAS  Google Scholar 

  35. Adunka R (2015) Carl Auer von Welsbach: Entdecker, Erfinder, Firmengründer. Verlag des Kärntner Landesarchivs, Klagenfurt, pp 18–36

    Google Scholar 

  36. Report of the Franklin Institute (1900) The Welsbach light. Science 12:951–956

    Article  Google Scholar 

  37. Jørgensen CK (1975) Narrow band thermoluminescence of Auer mantles containing neodymium, holmium, erbium or thulium in mixed oxides. Chem Phys Lett 34:14–16

    Article  Google Scholar 

  38. Rubens H (1899) Über die Reststrahlen des Fluβpathes. Ann Phys 305:576–588

    Article  Google Scholar 

  39. Rubens H, Aschkinass E (1899) Isolirung langwelliger Wärmestrahlen durch Quarzprismen. Ann Phys 303:459–466

    Article  Google Scholar 

  40. Kangro H (1976) Early history of Planck’s radiation law. Taylor & Francis, New York, p 165, 183

    Google Scholar 

  41. Sedlacek F (1934) Auer von Welsbach. Österreichisches Forschungsinstitut für Geschickte der Technik in Wien. Blätter für Geschichte der Technik, Zweites Heft. Erhard L (ed) Julius Springer Verlag, Wien, p 40

    Google Scholar 

  42. Feldhaus FM (1928) Zum 70. Geburtstag von Auer von Welsbach. Chem-Ztg 52:689–690 as quoted in Weeks ME (1932) The discovery of the elements. XVI. The rare earth elements. J Chem Educ 9:1751–1773

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Adunka .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adunka, R., Orna, M.V. (2018). Plus Lucis. In: Carl Auer von Welsbach: Chemist, Inventor, Entrepreneur. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-77905-8_5

Download citation

Publish with us

Policies and ethics