Skip to main content

Didymium’s Twilight and Two New “Stars”

  • Chapter
  • First Online:
  • 274 Accesses

Part of the book series: SpringerBriefs in Molecular Science ((BRIESFHISTCHEM))

Abstract

Long experience in dealing with the rare earth elements and the difficulty of separating them one from the other made chemists aware of the pitfalls of claiming that they had succeeded in producing an unequivocally pure compound. Furthermore, the claimed discoveries turned out to be a tangled web of errors mixed with grains of truth as investigators tried to go over old ground, that is, to take another look at minerals once pronounced to be completely separated and analyzed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Wöhler asserted that Mosander had chosen the name because he had two sets of twins.

  2. 2.

    Marignac [1].

  3. 3.

    Bunsen [2].

  4. 4.

    Bunsen [3].

  5. 5.

    Note: With the exception of didymium, the names of elements that are not now present nor ever were present in the periodic table are rendered in italics.

  6. 6.

    This could mean either “deceived” or “disappointed.” Delafontaine was both.

  7. 7.

    Delafontaine [4].

  8. 8.

    Delafontaine [5].

  9. 9.

    Although in the separation later carried out by Auer, he does not mention a blue band as indicative of either praseodymium and neodymium.

  10. 10.

    Cleve [6].

  11. 11.

    Brauner [7].

  12. 12.

    Abstracts in J Am Chem Soc (1882), 4:240. Remarks on Didymium. By P. T. Cleve. (No. 1, July 3d, 1882.) In a preliminary note the author suggested the existence of a new element which he named Beta-Didymium, but further experiments have shown the non-existence of this new element.

  13. 13.

    Abstracts in J Am Chem Soc (1882), 4:240. On Didymium. By B. Brauner. No. 26. (June 26, 1882). Ordinary didymium is a mixture of three elements-didymium, beta-didymium and perhaps samarium.

  14. 14.

    Bohuslav Brauner was a Bohemian chemist who spent almost his entire career at Charles University in Prague. A student in Robert Bunsen’s laboratory from 1878 to 1879, he conceived there a lifelong interest in the rare earth elements. He was particularly observant regarding missing elements and proposed that one lay hidden between neodymium and samarium. He also was the first to propose that all of the rare earths should be placed in the same box in the periodic table since there did not seem to be any other room for them given their chemical similarities.

  15. 15.

    Goldschmidt [8]. Fractional crystallization is a method of separating two or more substances whose properties are so similar that the classical chemical methods are useless. The evaporation of a solution containing their compounds gives rise to mixed crystals; however, the proportion of the two elements in these crystals is different from those in the mother liquor, so that it is possible to separate one from the other by successive operations.

  16. 16.

    Auer von Welsbach [9].

  17. 17.

    Auer von Welsbach [10].

  18. 18.

    Auer von Welsbach [11].

  19. 19.

    Langmuir [12].

  20. 20.

    No additional elements were ever found even though thoroughly searched for by Auer himself.

  21. 21.

    Auer von Welsbach [13].

  22. 22.

    Auer von Welsbach [14].

  23. 23.

    Auer von Welsbach [15].

  24. 24.

    Aldebaran is a near-first magnitude star located in the constellation Taurus, about 65 light years from the sun; Cassiopeia is a constellation in the northern sky.

  25. 25.

    Exner and Haschek [16].

  26. 26.

    Thalén [17].

  27. 27.

    Eder and Valenta [18].

  28. 28.

    Kragh [19].

  29. 29.

    Kragh [20]. This reference, and the preceding one, are invaluable for following the intricacies of the priority disputes to be discussed in summary below. The authors owe a great deal to the scholarship evidenced by Prof. Kragh in telling this complicated tale.

  30. 30.

    Urbain [21].

  31. 31.

    In actual fact, today’s value for ytterbium is 173.04 and the value for lutetium is 174.967; Urbain’s error factor for ytterbium almost exceeded three atomic weight units!.

  32. 32.

    Urbain [22].

  33. 33.

    Units were never given either for atomic weights nor for spectral lines and bands. One assumes that in the table presented the units are in Ängstroms.

  34. 34.

    Auer von Welsbach [23].

  35. 35.

    Clark et al. [24].

  36. 36.

    Kragh [25].

  37. 37.

    Fontani et al. [26].

  38. 38.

    Auer von Welsbach [27].

  39. 39.

    Element 61 took on many names, among them florentium, illinium, and cyclonium

  40. 40.

    Marinsky et al. [28].

  41. 41.

    Marinsky [29].

  42. 42.

    Urbain [30].

  43. 43.

    Urbain [31].

  44. 44.

    Szabadvary F. Discovery and separation of the rare earths. In Gschneider and Eyring [32].

  45. 45.

    Coster and Hevesy [33].

  46. 46.

    Urbain [34], written when Brauner retired from an active scientific life.

  47. 47.

    Štrbáňová [35]. The author comments: “Priority disputes represent in history of science an intriguing phenomenon. If at all, only primary sources can give us relevant answers about the individual cases, but their interpretation deserves deeper historical analysis.”

  48. 48.

    Kragh [36].

  49. 49.

    Even though Brauner and Auer worked in Robert Bunsen’s laboratory they probably had never met since their terms there did not oveerlap. In 1883, while Auer was still working with Bunsen, Brauner came for a visit, but claimed that while he was there, Auer did not “present himself.” (Letter from B. Brauner to M. Speter, 18 May 1933). Reproduced from [37].

  50. 50.

    This was the German equivalent of the International Committee on Chemical Elements set up independently after World War I because of the Allies’ policy that excluded any nation from the former central powers, from sitting on the International Commission.

  51. 51.

    Deutsche Atomgewichts-Kommission [38].

  52. 52.

    Pohl [39].

References

  1. Marignac J-CG (1853) Recherches sur le didyme et sur ses principales combinaisons. Ann Chim Phys 38:148–177

    Google Scholar 

  2. Bunsen R (1864) Umkehrung der absorptionsstreifen im didymspectrum. Ann Chem Pharm 131:255–256

    Article  Google Scholar 

  3. Bunsen RW (1866) Phenomena observed in absorption-spectrum of didymium. Phil Mag 32:177–182

    Article  Google Scholar 

  4. Delafontaine M (1864) Matériaux pour servir à 1’histoire des métaux de la cerite et de la gadolinite. 1. Sur 1’erbine ou oxyde d’erbium. 2. Sur la terbine et sur 1’yttria. Archivs Sci Phys Nat 21(2):97–112

    Google Scholar 

  5. Delafontaine M (1878) Le didym de la cérite est probablement un mélange de plusieurs corps. C R Chim Acad Sci, Ser IIc: Chim 87:634–635

    Google Scholar 

  6. Cleve P-T (1882) Note préliminaire sur le didyme. C. R. Acad. Sci. Ser. IIc: Chim. 94:1528–1530

    Google Scholar 

  7. Brauner B (1882) Sur le didyme. C R Acad Sci, Ser IIc: Chim. 94:1718–1719

    Google Scholar 

  8. Goldschmidt B (1990) Atomic rivals. Rutgers University Press, New Brunswick, p 10

    Google Scholar 

  9. Auer von Welsbach C (1885) Die Zerlegung des Didyms in seine Elemente. Sitzungsber. - Oesterr. Akad. Wiss., Math. -Naturwiss. Kl., Abt. 1 92:317–331

    Google Scholar 

  10. Auer von Welsbach C (1884) Über die seltenen Erden. Monatsh Chem 5:508–522

    Article  Google Scholar 

  11. Auer von Welsbach C (1903) Die Zerlegung des Didyms in seine Elemente.II. Sitzungsber. - Oesterr. Akad. Wiss., Math. -Naturwiss. Kl., Abt. 1 112:1037–1055

    Google Scholar 

  12. Langmuir AC (1894) Index to the literature of didymium 1842–1893. Smithsonian Miscellaneous Collections 972. Smithsonian Institution, Washington, D.C., p 14

    Google Scholar 

  13. Auer von Welsbach, C (1905) Vorläufiger Bericht über der Zerlegung des Ytterbiums in seine Elemente. Anzeiger der mathematisch-naturwissenschaftliche Klasse der kaiserlische Akademie der Wissenschaften 42:122

    Google Scholar 

  14. Auer von Welsbach, C (1906) Über die Elemente der Yttergruppe. Sitzungsber. - Oesterr. Akad. Wiss., Math. -Naturwiss. 115, IIb:737–747

    Google Scholar 

  15. Auer von Welsbach C (1908) Die Zerlegung des Ytterbiums in seine Elemente. Monatsh Chem 29:181–225

    Article  Google Scholar 

  16. Exner F, Haschek E (1904) Wellenlängtabellen für Spektralanalytische Untersuchen auf Grund der Ultravioletten Bogenspektren der Elemente. Deuticke-Verlag, Vienna

    Google Scholar 

  17. Thalén TR (1881) Sur les raies brillantes spectrales des métaux scandium, ytterbium, erbium et thulium. Öfversigt af Kungliga Vetenskaps Akademiens Handlingar 38(6):13–21

    Google Scholar 

  18. Eder JM, Valenta E (1910) Wellenlängenmessungen im sichtbaren Bezirk der Bogenspektren, der von Auer v. Welsbach entdeckten Elemente Aldebaranium und Cassiopeïum. Z Anorg Allg Chem 67:102–106

    Article  CAS  Google Scholar 

  19. Kragh H (1996) Elements no. 70, 71 and 72: Discoveries and controversies. In: Evans CH (ed) Episodes from the history of the rare earth elements. Kluwer Academic Publishers, Dordrecht, pp 67–89

    Chapter  Google Scholar 

  20. Kragh H (1980) Anatomy of a priority conflict: The case of element 72. Centaurus 23:275–301

    Article  Google Scholar 

  21. Urbain G (1907) Un nouvel élément: le lutécium, résultant de dedoublement de l’ytterbium de Marignac. C R Acad Sci, Ser IIc: Chim 145:759–762

    CAS  Google Scholar 

  22. Urbain G (1908) Sur le lutécium et le néoytterbium. CR Acad Sci, Ser IIc: Chim 146:406–408

    CAS  Google Scholar 

  23. Auer von Welsbach C (1909) Beilage zur Abhandlung: Zur Zerlegung des Ytterbiums. Monatsh Chem 30:509–512

    Article  Google Scholar 

  24. Clark FW, Ostwald W, Thorpe TE, Urbain G (1909) Report of the International Committee on Atomic Weights. J Am Chem Soc 31:1–6

    Article  Google Scholar 

  25. Kragh, H (1996) Elements no. 70, 71 and 72: Discoveries and controversies. In Evans CH (ed) Episodes from the history of the rare earth elements. Kluwer Academic Publishers, Dordrecht, pp. 67–89, p. 75

    Chapter  Google Scholar 

  26. Fontani M, Costa MG, Orna MV (2015) The lost elements: The periodic table’s shadow side. Oxford University Press, New York, pp 209, 213 and 235

    Google Scholar 

  27. Auer von Welsbach C (1926) Über eine Versuche zur Auffindung des Elementes Nr. 61. Chem-Ztg 118:990–991

    Google Scholar 

  28. Marinsky JA, Glendenin LE, Coryell CD (1947) The chemical identification of radioisotopes of neodymium and of element 61. J Am Chem Soc 69:2781–2785

    Article  CAS  PubMed  Google Scholar 

  29. Marinsky JA (1996) The search for element 61. In: Evans CH (ed) Episodes from the history of the rare earth elements. Kluwer Academic Publishers, Dordrecht, pp 91–107

    Chapter  Google Scholar 

  30. Urbain G (1911) Sur un nouvel élément qui accompagne le lutécium et le scandium dans les terres de gadolinite: le celtium. C R Acad Sci, Ser IIc: Chim 152:141–143

    CAS  Google Scholar 

  31. Urbain G (1922) Les numéros atomiques du néo-ytterbium, du lutécium et du celtium. C R Chim Acad Sci, Ser IIc: Chim 174:1349–1351

    CAS  Google Scholar 

  32. Gschneider and Eyring (1988) Handbook on the physics and chemistry of rare earths. Volume 11 – Two-hundred year impact of rare earths on science. North-Holland, Amsterdam, Oxford, 33–80, pp. 74–75

    Google Scholar 

  33. Coster D, Hevesy G (1923) On the missing element of atomic number 72. Nature 111:79

    Article  CAS  Google Scholar 

  34. Urbain G (1925) Hommage à Bohuslav Brauner. Rec Travaux Chim Pays-Bas 44(281–296):295

    Google Scholar 

  35. Štrbáňová S (2006) The chemical research of Brauner and Auer. Paper presented at the Ignaz Lieben Symposium “Exploring science around Europe in 1900: Circles, schools, people. http://www.i-l-g.at/programmarchiv/il-symposium-2006/(last accessed 15 Jan 2018)

  36. Kragh H (1980) Anatomy of a priority conflict: The case of element 72. Centaurus 23(275–301):289

    Google Scholar 

  37. Weeks, ME (1956) Discovery of the elements, 6th ed. Journal of Chemical Education, Easton, PA, p. 717

    Google Scholar 

  38. Deutsche Atomgewichts-Kommission (1924) Vierter Bericht der Deutschen Atomgewichts-Kommission. In der Zeit vom Juli 1922 bis November 1923 veröffentlichte Abhandlungen. Ber dtsch chem Ges A/B 57:i–xxxvi

    Google Scholar 

  39. Pohl, WG (2011) Carl Auer von Welsbach als Konkurrent von George [sic] Urbain. In Carl Freiherr Auer von Welsbach (1858–1929). Symposium anlässlich des 150. Geburtstages. Wien, 4. Juni 2008. Österreichischen Akademie der Wissenschaften, Wien, Austria, pp. 59–69

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Adunka .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Adunka, R., Orna, M.V. (2018). Didymium’s Twilight and Two New “Stars”. In: Carl Auer von Welsbach: Chemist, Inventor, Entrepreneur. SpringerBriefs in Molecular Science(). Springer, Cham. https://doi.org/10.1007/978-3-319-77905-8_4

Download citation

Publish with us

Policies and ethics