Skip to main content

Dynamic Control of 6-DOF AUVs and Fault Detection/Tolerance Strategies

  • Chapter
  • First Online:

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 123))

Abstract

Control of UVMSs require full-DOF control of the vehicle, cruise vehicles with rudder and stern are not suitable to hold a manipulator arm for their incapacity to counteract the interaction forces with the arm itself. For this reason the following chapter restricts the discussion to the problem of controlling an underwater vehicle in 6-DOFs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Pioneering deep-sea robot lost at sea. http://www.whoi.edu/main/news-releases/2010?tid=3622&cid=70487. Accessed 2 Jan 2017

  2. Y.K. Alekseev, V.V. Kostenko, A.Y. Shumsky, Use of identification and fault diagnostic methods for underwater robotics, in OCEANS’94.’Oceans Engineering for Today’s Technology and Tomorrow’s Preservation (IEEE, 1994), pp. 489–494

    Google Scholar 

  3. A. Alessandri, M. Caccia, G. Veruggio, A model-based approach to fault diagnosis in unmanned underwater vehicles, in OCEANS’98 Conference Proceedings, vol. 2 (IEEE, 1998), pp. 825–829

    Google Scholar 

  4. A. Alessandri, M. Caccia, G. Veruggio, Fault detection of actuator faults in unmanned underwater vehicles. Control Eng. Pract. 7(3), 357–368 (1999)

    Article  Google Scholar 

  5. A. Alessandri, A. Gibbons, A.J. Healey, G. Veruggio, Robust model-based fault diagnosis for unmanned underwater vehicles using sliding mode-observers, in Proceedings International Symposium Unmanned Untethered Submersible Technology (Durham, New Hampshire, 1999), pp. 352–359

    Google Scholar 

  6. G. Antonelli, A new adaptive control law for the Phantom ROV, in 7th IFAC Symposium on Robot Control (Wroclaw, 2003), pp. 569–574

    Google Scholar 

  7. G. Antonelli, On the use of adaptive/integral actions for 6-degrees-of-freedom control of autonomous underwater vehicles. IEEE J. Oceanic Eng. 32(2), 300–312 (2007)

    Article  Google Scholar 

  8. G. Antonelli, F. Caccavale, S. Chiaverini, G. Fusco, A novel adaptive control law for autonomous underwater vehicles, in Proceedings 2001 IEEE International Conference on Robotics and Automation (Seoul, 2001), pp. 447–451

    Google Scholar 

  9. G. Antonelli, F. Caccavale, S. Chiaverini, G. Fusco, On the use of integral control actions for autonomous underwater vehicles, in 2001 European Control Conference (Porto, 2001)

    Google Scholar 

  10. G. Antonelli, F. Caccavale, S. Chiaverini, G. Fusco, A novel adaptive control law for underwater vehicles. IEEE Trans. Control Syst. Technol. 11(2), 221–232 (2003)

    Article  Google Scholar 

  11. G. Antonelli, S. Chiaverini, N. Sarkar, M. West, Adaptive control of an autonomous underwater vehicle. experimental results on ODIN, in IEEE International Symposium on Computational Intelligence in Robotics and Automation (Monterey, 1999), pp. 64–69

    Google Scholar 

  12. G. Antonelli, S. Chiaverini, N. Sarkar, M. West, Adaptive control of an autonomous underwater vehicle: experimental results on ODIN. IEEE Trans. Control Syst. Technol. 9(5), 756–765 (2001)

    Article  Google Scholar 

  13. S. Arimoto, Control Theory of Nonlinear Mechanical Systems (Oxford University Press, Inc., Oxford, 1996)

    Google Scholar 

  14. P.S. Babcock IV, J.J. Zinchuk, Fault-tolerant design optimization: Application to an autonomous underwater vehicle navigation system, in Proceedings of the (1990) Symposium on Autonomous Underwater Vehicle Technology, 1990. AUV’90 (IEEE, Washington DC, 1990), pp. 34–43

    Google Scholar 

  15. D. Barnett, S. McClaran, E. Nelson, M. McDermott, G. Williams, Architecture of the Texas A&M autonomous underwater vehicle controller, in Proceedings of the 1996 Symposium on Autonomous Underwater Vehicle Technology, 1996. AUV’96 (Monterey, IEEE, 1996), pp. 231–237

    Google Scholar 

  16. G. Beale, J. Kim, A robust approach to reconfigurable control, in 5th IFAC Conference on Manoeuvring and Control of Marine Craft (Aalborg, 2000), pp. 197–202

    Google Scholar 

  17. J.G. Bellingham, C.A. Goudey, T.R. Consi, J.W. Bales, D.K. Atwood, J.J. Leonard, C. Chryssostomidis, A second generation survey AUV, in Proceedings of the 1994 Symposium on Autonomous Underwater Vehicle Technology, 1994. AUV’94 (IEEE, Cambridge, 1994), pp. 148–155

    Google Scholar 

  18. R. Bono, Ga. Bruzzone, M. Caccia, ROV actuator fault diagnosis through servo-amplifiers’ monitoring: an operational experience, in OCEANS’99 MTS/IEEE. Riding the Crest into the 21st Century, vol. 3 (IEEE, 1999), pp. 1318–1324

    Google Scholar 

  19. M.P. Brito, G. Griffiths, A Markov chain state transition approach to establishing critical phases for AUV reliability. IEEE J. Oceanic Eng. 36(1), 139–149 (2011)

    Article  Google Scholar 

  20. R.A. Brooks, A robust layered control system for a mobile robot. IEEE J. Robot. Autom. 2(1), 14–23 (1986)

    Article  Google Scholar 

  21. M. Caccia, R. Bono, Ga. Bruzzonea, Gi Bruzzone, E. Spirandelli, G. Veruggio, Experiences on actuator fault detection, diagnosis and accomodation for ROVs, in International Symposium on Unmanned Untethered Submersible Technology (Durham, 2001)

    Google Scholar 

  22. N.A. Chaturvedi, A.K. Sanyal, N.H. McClamroch, Rigid-body attitude control. IEEE Control Syst. Mag. 31(3), 30–51 (2011)

    Article  MathSciNet  Google Scholar 

  23. H.T. Choi, A. Hanai, S.K. Choi, J. Yuh, Development of an underwater robot, ODIN-III, in 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2003.(IROS 2003), Proceedings, vol. 1 (IEEE, 2003), pp. 836–841

    Google Scholar 

  24. S.K. Choi, J. Yuh, Experimental study on a learning control system with bound estimation for underwater robots. Auton. Robot. 3(2), 187–194 (1996)

    Article  Google Scholar 

  25. G. Conte, A. Serrani, Robust lyapunov-based design for autonomous underwater vehicles, in Proceedings of the 5th IFAC Symposium on Robot Control (1997), pp. 321–326

    Google Scholar 

  26. M.L. Corradini, A. Monteriù, G. Orlando, An actuator failure tolerant control scheme for an underwater remotely operated vehicle. IEEE Trans. Control Syst. Technol. 19(5), 1036–1046 (2011)

    Article  Google Scholar 

  27. M.L. Corradini, G. Orlando, A discrete adaptive variable-structure controller for MIMO systems, and its application to an underwater ROV. IEEE Trans. Control Syst. Technol. 5(3), 349–359 (1997)

    Article  Google Scholar 

  28. R. Cristi, F. Papoulias, A. Healey, Adaptive sliding mode control of autonomous underwater vehicles in the dive plane. IEEE J. Oceanic Eng. 15(3), 152–160 (1990)

    Article  Google Scholar 

  29. J.P.V.S. Da Cunha, R.R. Costa, L. Hsu, Design of a high performance variable structure position control of ROVs. IEEE J. Oceanic Eng. 20(1), 42–55 (1995)

    Article  Google Scholar 

  30. R. Dearden, J. Ernits, Automated fault diagnosis for an autonomous underwater vehicle. IEEE J. Oceanic Eng. (2013)

    Google Scholar 

  31. X. Dermin, G. Lei, Wavelet transform and its application to autonomous underwater vehicle control system fault detection, in Proceedings of the 2000 International Symposium on Underwater Technology, 2000. UT 00 (IEEE, Tokyo, 2000), pp. 99–104

    Google Scholar 

  32. B. Deuker, M. Perrier, B. Amy, Fault-diagnosis of subsea robots using neuro-symbolic hybrid systems, in OCEANS’98 Conference Proceedings (IEEE, Nice, 1998), pp. 830–834

    Google Scholar 

  33. T. Falkenberg, R.T. Gregersen, M. Blanke, Navigation system fault diagnosis for underwater vehicle. 47, 9654–9660 (2014). Elsevier

    Google Scholar 

  34. J. Farrell, T. Berger, B.D. Appleby, Using learning techniques to accommodate unanticipated faults. IEEE Control Syst. 13(3), 40–49 (1993)

    Article  Google Scholar 

  35. J. Ferguson, The Theseus autonomous underwater vehicle. Two successful missions, in Proceedings of the 1998 International Symposium on Underwater Technology, 1998 (IEEE, Tokyo, 1998), pp. 109–114

    Google Scholar 

  36. J. Ferguson, A. Pope, B. Butler, R. Verrall, Theseus AUV-two record breaking missions. Sea Technol. 40(2), 65–70 (1999)

    Google Scholar 

  37. O.E. Fjellstad, T.I. Fossen, Position and attitude tracking of AUV’s: a quaternion feedback approach. IEEE J. Oceanic Eng. 19(4), 512–518 (1994)

    Article  Google Scholar 

  38. O.E. Fjellstad, T.I. Fossen, Singularity-free tracking of unmanned underwater vehicles in 6 DOF, in Proceedings of the 33rd IEEE Conference on Decision and Control, 1994, vol. 2 (IEEE, 1994), pp. 1128–1133

    Google Scholar 

  39. T. Fossen, Guidance and Control of Ocean Vehicles (Chichester, 1994)

    Google Scholar 

  40. T. Fossen, Marine Control Systems: Guidance, Navigation and Control of Ships, Rigs and Underwater Vehicles (Marine Cybernetics, Trondheim, 2002)

    Google Scholar 

  41. T. Fossen, J.G. Balchen, et al., The NEROV autonomous underwater vehicle, in Proc. Conference Oceans 91 (Citeseer, Honolulu, 1991)

    Google Scholar 

  42. T. Fossen, S.I. Sagatun, Adaptive control of nonlinear systems: a case study of underwater robotic systems. J. Robotic Syst. 8(3), 393–412 (1991)

    Article  MATH  Google Scholar 

  43. T.I. Fossen, T.A. Johansen, A survey of control allocation methods for ships and underwater vehicles, in 14th Mediterranean Conference on Control and Automation, 2006. MED’06 (IEEE, 2006), pp. 1–6

    Google Scholar 

  44. A.S. Gadre, D.J. Stilwell, A complete solution to underwater navigation in the presence of unknown currents based on range measurements from a single location, in 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2005, (IROS 2005) (IEEE, 2005), pp. 1420–1425

    Google Scholar 

  45. K. Hamilton, D. Lane, N. Taylor, K. Brown, Fault diagnosis on autonomous robotic vehicles with RECOVERY: an integrated heterogeneous-knowledge approach, in IEEE International Conference on Robotics and Automation, 2001, Proceedings 2001 ICRA (IEEE, San Francisco, 2001), pp. 3232–3237

    Google Scholar 

  46. A. Healey, D. Lienard, Multivariable sliding mode control for autonomous diving and steering of unmanned underwater vehicles. IEEE J. Oceanic Eng. 18(3), 327–339 (1993)

    Article  Google Scholar 

  47. A. Healey, S.M. Rock, S. Cody, D. Miles, J.P. Brown, Toward an improved understanding of thruster dynamics for underwater vehicles. IEEE J. Oceanic Eng. 20(4), 354–361 (1995)

    Article  Google Scholar 

  48. A.J. Healey, A neural network approach to failure diagnostics for underwater vehicles, in Proceedings of the 1992 Symposium on Autonomous Underwater Vehicle Technology, 1992. AUV’92 (IEEE, Washington D.C, 1992), pp. 131–134

    Google Scholar 

  49. A.J. Healey, Analytical redundancy and fuzzy inference in AUV fault detection and compensation, in Proceedings Oceanology 1998 (Brighton, 1998), pp. 45–50,

    Google Scholar 

  50. A.J. Healey, F. Bahrke, J. Navarrete, Failure diagnostics for underwater vehicles: A neural network approach, in IFAC Conference on Manoeuvring and Control of Marine Craft (Aalborg, 1992), pp. 293–306

    Google Scholar 

  51. A.J. Healey, D.B. Marco, Experimental verification of mission planning by autonomous mission execution and data visualization using the NPS AUV II, in Proceedings of the 1992 Symposium on Autonomous Underwater Vehicle Technology, 1992. AUV’92 (IEEE, Washington D.C, 1992), pp. 65–72

    Google Scholar 

  52. W. Hornfeld, E. Frenzel, Intelligent AUV on-board health monitoring software (INDOS), in OCEANS’98 Conference Proceedings, vol. 2 (IEEE, Nice, 1998), pp. 815–819

    Google Scholar 

  53. L. Hsu, R.R. Costa, F. Lizarrade, J.P.V. Soares da Cunha, Dynamic positioning of remotely operated underwater vehicles. IEEE Robot. Autom. Mag. 7(3), 21–31 (2000)

    Article  Google Scholar 

  54. B. Hutchison, Velocity aided inertial navigation, in Proc. Sensor Nav. Issues for UUVs, CS Draper Lab (1991)

    Google Scholar 

  55. J. Kim, G. Beale, Fault detection and classification in underwater vehicle using the \(t^2\) statistic, in 9th Mediterranean Conference on Control and Automation

    Google Scholar 

  56. T.W. Kim, J. Yuh, A novel neuro-fuzzy controller for autonomous underwater vehicles, in IEEE International Conference on Robotics and Automation, 2001, Proceedings 2001 ICRA, vol. 3 (IEEE, 2001), pp. 2350–2355

    Google Scholar 

  57. W.J. Kirkwood, D. Gashler, H. Thomas, T.C. O’Reilly, R. McEwen, N. Tervalon, F. Shane, D. Au, M. Sibenac, T. Konvalina, et al., Development of a long endurance autonomous underwater vehicle for ocean science exploration, in OCEANS, 2001. MTS/IEEE Conference and Exhibition (IEEE, Honolulu, 2001), pp. 1504–1512

    Google Scholar 

  58. K. Hamiltonand, D.M. Lane, K.E. Brown, J. Evans, N.K. Taylor, An integrated diagnostic architecture for autonomous underwater vehicles: research articles. J. Field Robot. 24(6), 497–526 (2007)

    Article  Google Scholar 

  59. C.S.G. Lee, J.S. Wang, J. Yuh, Self-adaptive neuro-fuzzy systems for autonomous underwater vehicle control. Adv. Robot. 15(5), 589–608 (2001)

    Article  Google Scholar 

  60. R.S. Mangoubi, B.D. Appleby, G.C. Verghese, W.E. Vander Velde, A robust failure detection and isolation algorithm, in Proceedings of the 34th IEEE Conference on Decision and Control, 1995 (IEEE, New Orleans, 1995), pp. 2377–2382

    Google Scholar 

  61. G. Marani, S.K. Choi, J. Yuh, Real-time center of buoyancy identification for optimal hovering in autonomous underwater intervention. Intel. Serv. Robot. 3(3), 175–182 (2010)

    Article  Google Scholar 

  62. D. Marco, A. Healey, Command, control, and navigation experimental results with the NPS ARIES AUV. IEEE J. Oceanic Eng. 26(4), 466–476 (2001)

    Article  Google Scholar 

  63. S. Martin, L.L. Whitcomb, Nonlinear model-based tracking control of underwater vehicles with three degree-of-freedom fully coupled dynamical plant models: theory and experimental evaluation. IEEE Trans. Control Syst. Technol. (2017)

    Google Scholar 

  64. S.C. Martin, L.L. Whitcomb, Preliminary experiments in fully actuated model based control with six degree-of-freedom coupled dynamical plant models for underwater vehicles, in IEEE International Conference on Robotics and Automation, 2013, Proceedings. ICRA’13 (IEEE, 2013), pp. 4606–4613

    Google Scholar 

  65. E. Miguelaez, P. Patron, K.E. Brown, Y.R. Petillot, D.M. Lane, Semantic knowledge-based framework to improve the situation awareness of autonomous underwater vehicles. IEEE Trans. Knowl. Data Eng. 23(5), 759–773 (2011)

    Article  Google Scholar 

  66. E. Nelson, S. McClaran, D. Barnett, Development and validation of the Texas A&M university autonomous underwater vehicle controller, Proceedings of the 1996 Symposium on Autonomous Underwater Vehicle Technology, 1996. AUV’96 (IEEE, Monterey, 1996), pp. 203–208

    Google Scholar 

  67. J. Nie, J. Yuh., E. Kardash, T. Fossen, On-board sensor-based adaptive control of small UUVS in very shallow water. Int. J. Adapt. Control Signal Process. 14(4), 441–452 (2000)

    Google Scholar 

  68. A. Orrick, M. McDermott, D. Barnett, E. Nelson, G. Williams, Failure detection in an autonomous underwater vehicle, in Proceedings of the 1996 Symposium on Autonomous Underwater Vehicle Technology, 1994. AUV’94 (IEEE, Cambridge, 1994), pp. 377–382

    Google Scholar 

  69. D. Perrault, M. Nahon, Fault-tolerant control of an autonomous underwater vehicle, in OCEANS’98 Conference Proceedings (IEEE, Nice, 1998), pp. 820–824

    Google Scholar 

  70. T.K. Podder, G. Antonelli, N. Sarkar, Fault tolerant control of an autonomous underwater vehicle under thruster redundancy: simulations and experiments, in Proceedings 2000 IEEE International Conference on Robotics and Automation (San Francisco, 2000), pp. 1251–1256

    Google Scholar 

  71. T.K. Podder, G. Antonelli, N. Sarkar, An experimental investigation into the fault-tolerant control of an autonomous underwater vehicle. J. Adv. Robot. 15(5), 501–520 (2001)

    Article  Google Scholar 

  72. T.K. Podder, N. Sarkar, Fault tolerant decomposition of thruster forces of an autonomous underwater vehicle, in Proceedings 1998 IEEE International Conference on Robotics and Automation (Leuven, 1998), pp. 84–89,

    Google Scholar 

  73. T.K. Podder, N. Sarkar, Fault-tolerant control of an autonomous underwater vehicle under thruster redundancy. Robot. Auton. Syst. 34(1), 39–52 (2001)

    Article  Google Scholar 

  74. N. Ranganathan, M.I. Patel, R. Sathyamurthy, An intelligent system for failure detection and control in an autonomous underwater vehicle. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 31(6), 762–767 (2001)

    Article  Google Scholar 

  75. H.E. Rauch, Intelligent fault diagnosis and control reconfiguration. IEEE Control Syst. 14(3), 6–12 (1994)

    Article  Google Scholar 

  76. J.S. Riedel, Shallow water stationkeeping of an autonomous underwater vehicle: the experimental results of a disturbance compensation controller, in OCEANS 2000 MTS/IEEE Conference and Exhibition, vol. 2 (IEEE, 2000), pp. 1017–1028

    Google Scholar 

  77. J.S. Riedel, A.J. Healey, Shallow water station keeping of AUVs using multi-sensor fusion for wave disturbance prediction and compensation, in OCEANS’98 Conference Proceedings, vol. 2 (IEEE, 1998), pp. 1064–1068

    Google Scholar 

  78. N. Sarkar, T.K. Podder, G. Antonelli, Fault accommodating thruster force allocation of an AUV considering thruster redundancy and saturation. IEEE Trans. Robot. Autom. 18(2), 223–233 (2002)

    Article  Google Scholar 

  79. A.C. Schultz, J.J. Grefenstette, K.A. De Jong, Adaptive testing of controllers for autonomous vehicles, in Proceedings of the 1992 Symposium on Autonomous Underwater Vehicle Technology, 1992. AUV’92 (IEEE, Washington, DC, 1992), pp. 158–164

    Google Scholar 

  80. B. Siciliano, L. Sciavicco, L. Villani, G. Oriolo, Robotics: Modelling, Planning and Control (Springer, Berlin, 2009)

    Google Scholar 

  81. J.J.E. Slotine, W. Li, On the adaptive control of robot manipulators. Int. J. Robot. Res. 6(3), 49–59 (1987)

    Article  Google Scholar 

  82. D.A. Smallwood, L.L. Whitcomb, Toward model based dynamic positioning of underwater robotic vehicles, in OCEANS, 2001. MTS/IEEE Conference and Exhibition, vol. 2 (IEEE, 2001), pp. 1106–1114

    Google Scholar 

  83. D.A. Smallwood, L.L. Whitcomb, The effect of model accuracy and thruster saturation on tracking performance of model based controllers for underwater robotic vehicles: experimental results, in IEEE International Conference on Robotics and Automation, 2002, Proceedings, ICRA’02, vol. 2 (IEEE, Washington, DC, 2002), pp. 1081–1087

    Google Scholar 

  84. D.A. Smallwood, L.L. Whitcomb, Model-based dynamic positioning of underwater robotic vehicles: theory and experiment. IEEE J. Oceanic Eng. 29(1), 169–186 (2004)

    Article  Google Scholar 

  85. R.P. Stokey, Software design techniques for the man machine interface to a complex underwater vehicle, in OCEANS’94.’Oceans Engineering for Today’s Technology and Tomorrow’s Preservation.’Proceedings (IEEE, Brest, 1994), pp. 119–124

    Google Scholar 

  86. Y.C. Sun, C.C. Cheah, Adaptive setpoint control for autonomous underwater vehicles, in Proceedings of the 42nd IEEE Conference on Decision and Control, 2003, vol. 2 (IEEE, 2003), pp. 1262–1267

    Google Scholar 

  87. G. Tacconi, A. Tiano, Reconfigurable control of an autonomous underwater vehicle, in Proceedings of the 6th International Symposium on Unmanned Untethered Submersible Technology, 1989 (IEEE, 1989), pp. 486–493

    Google Scholar 

  88. M. Takai, T. Fujii, T. Ura, A model based diagnosis system for autonomous underwater vehicles using artifical neural networks, in Proceedings International Symposium Unmanned Untethered Submersible Technology (Durham, 1995), pp. 243–252

    Google Scholar 

  89. G. Tong, Z. Jimao, A rapid reconfiguration strategy for UUV control, in Proceedings of the 1998 International Symposium on Underwater Technology, 1998 (IEEE, Tokyo, 1998), pp. 478–483

    Google Scholar 

  90. L. Whitcomb, Underwater robotics: out of the research laboratory and into the field, in IEEE International Conference on Robotics and Automation, 2000, Proceedings, ICRA’00 (IEEE, 2000), pp. 709–716

    Google Scholar 

  91. K.C. Yang, J. Yuh, S.K. Choi, Experimental study of fault-tolerant system design for underwater robots, in Proceedings of the 1998 IEEE International Conference on Robotics and Automation, 1998, vol. 2 (IEEE, 1998), pp. 1051–1056

    Google Scholar 

  92. K.C. Yang, J. Yuh, S.K. Choi, Fault-tolerant system design of an autonomous underwater vehicle ODIN: an experimental study. Int. J. Syst. Sci. 30(9), 1011–1019 (1999)

    Article  MATH  Google Scholar 

  93. A. Yavnai, Architecture for an autonomous reconfigureable intelligent control system (ARICS), in Proceedings of the 1996 Symposium on Autonomous Underwater Vehicle Technology, 1996. AUV’96 (IEEE, Monterey, 1996), pp. 238–245

    Google Scholar 

  94. J. Yuh, Modeling and control of underwater robotic vehicles. IEEE Trans. Syst. Man Cybern. 20(6), 1475–1483 (1990)

    Article  Google Scholar 

  95. J. Yuh, Learning control for underwater robotic vehicles. IEEE Control Syst. 14(2), 39–46 (1994)

    Article  Google Scholar 

  96. J. Yuh, K.V. Gonugunta, Learning control of underwater robotic vehicles, in IEEE International Conference on Robotics and Automation, 1993. Proceedings. ICRA’93, vol. 1 (IEEE, 1993), pp. 106–111

    Google Scholar 

  97. J. Yuh, J. Nie, C.S.G. Lee, Experimental study on adaptive control of underwater robots, in Proceedings of the 1999 IEEE International Conference on Robotics and Automation, 1999, (IEEE, 1999), pp. 393–398

    Google Scholar 

  98. J. Yuh, M. West, Underwater robotics. Adv. Robot. 15(5), 609–639 (2001)

    Article  Google Scholar 

  99. S. Zhao, J. Yuh, Experimental study on advanced underwater robot control. IEEE Trans. Rob. 21(4), 695–703 (2005)

    Article  Google Scholar 

  100. X. Zheng, Layered control of a practical AUV, in Proceedings of the 1992 Symposium on Autonomous Underwater Vehicle Technology, 1992. AUV’92 (IEEE, Washington D.C, 1992), pp. 142–147,

    Google Scholar 

  101. W.H. Zhu, Virtual Decomposition Control: Toward Hyper Degrees of Freedom Robots, vol. 60 (Springer, Berlin, 2010)

    Google Scholar 

  102. W.H. Zhu, T. Lamarche, E. Dupuis, D. Jameux, P. Barnard, G. Liu, Precision control of modular robot manipulators: the VDC approach with embedded FPGA. IEEE Trans. Robot. (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Antonelli .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Antonelli, G. (2018). Dynamic Control of 6-DOF AUVs and Fault Detection/Tolerance Strategies. In: Underwater Robots. Springer Tracts in Advanced Robotics, vol 123. Springer, Cham. https://doi.org/10.1007/978-3-319-77899-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77899-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77898-3

  • Online ISBN: 978-3-319-77899-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics