Skip to main content

Overview on Primary Production in the Southwestern Atlantic

  • Chapter
  • First Online:
Plankton Ecology of the Southwestern Atlantic

Abstract

Photosynthesis is the fundamental process by which autotrophs produce organic matter to sustain the biosphere using basic elements (i.e., CO2 and H2O) and solar irradiance as energy source. Marine phytoplankton provides near half of the global primary production (PP), being at the base of most marine trophic webs and playing an important role in the cycling of atmospheric CO2. Therefore, it is crucial to estimate and understand the relationships between environmental conditions and PP rates in the global ocean. There are scarce field estimations of PP in the southern hemisphere and in the Southwestern Atlantic in particular. Hence, global estimates are generally made using indirect methods, such as satellite or biogeochemical models, which should be validated and adjusted with field data to produce reliable results.

In this section we synthesize the available information, assembling recent field PP estimations obtained by research groups from Argentina, Brazil, and Uruguay. We evaluate the insights derived from this integrated dataset on the spatial and temporal dynamics of the phytoplankton production in the Southwestern Atlantic. In addition, a general view of the spatial-temporal variation in PP at a regional scale using a simple satellite PP model is presented. Finally, we offer perspectives and recommendations for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armstrong RA, Gilbes F, Guerrero R et al (2004) Validation of SeaWiFS–derived chlorophyll for the Rio de la Plata estuary and adjacent waters. Int J Remote Sens 25:1501–1505

    Article  Google Scholar 

  • Barbieri ES, Villafañe VE, Helbling EW (2002) Experimental assessment of UV effects upon temperate marine phytoplankton when exposed to variable radiation regimes. Limnol Oceanogr 47:1648–1655

    Article  Google Scholar 

  • Behrenfeld MJ, Falkowski PG (1997) Photosynthetic rates derived from satellite–based chlorophyll concentration. Limnol Oceanogr 42:1–20

    Article  CAS  Google Scholar 

  • Behrenfeld MJ, Boss E, Siegel D et al (2005) Carbon–based ocean productivity and phytoplankton physiology from space. Glob Biogeochem Cycles 19:GB1006. https://doi.org/10.1029/2004GB002299

    Article  CAS  Google Scholar 

  • Bender ML, Grande K, Johnson K et al (1987) A comparison of four methods for determining planktonic community production. Limnol Oceanogr 32:1085–1098. https://doi.org/10.4319/lo.1987.32.5.1085

    Article  Google Scholar 

  • Bianchi AA, Bianucci L, Piola A et al (2005) Vertical stratification and air–sea CO2 fluxes in the Patagonian shelf. J Geophys Res 110:C07003. https://doi.org/10.1029/2004JC002488

    Article  CAS  Google Scholar 

  • Bianchi AA, Ruiz Pino D, Isbert Perlender HG et al (2009) Annual balance and seasonal variability of sea–air CO2 fluxes in the Patagonian Sea: their relationship with fronts and chlorophyll distribution. J Geophys Res 114:C03018. https://doi.org/10.1029/2008JC004854

    Article  CAS  Google Scholar 

  • Bouman H, Platt T, Sathyendranath S, Stuart V (2005) Dependence of light saturated photosynthesis on temperature and community structure. Deep-Sea Res I 52:1284–1299

    Article  Google Scholar 

  • Bouman HA, Platt T, Doblin M et al (2018) Photosynthesis–irradiance parameters of marine phytoplankton: synthesis of a global data set. Earth Syst Sci Data. https://doi.org/10.5194/essd–2017–40

  • Brandini FP (1988) Hydrography, phytoplankton biomass and photosynthesis in shelf and oceanic waters off southeastern Brazil during autumn (May/June 1983). Bol Inst Oceanogr 36:63–72

    Article  Google Scholar 

  • Brandini FP (1990) Primary production and phytoplankton photosynthetic in the southeastern Brazilian coast. Bol Inst Oceanogr 38:147–159

    Article  Google Scholar 

  • Brandini FP, Nogueira M, Simião M et al (2014) Deep chlorophyll maximum and plankton community response to oceanic bottom intrusions on the continental shelf in the South Brazilian bight. Cont Shelf Res 89:61–75. https://doi.org/10.1016/j.csr.2013.08.002

    Article  Google Scholar 

  • Buitenhuis ET, Hashioka T, LeQuéré C (2013) Combined constraints on global ocean primary production using observations and models. Glob Biogeochem Cycles 27:847–858. https://doi.org/10.1002/gbc.20074

    Article  CAS  Google Scholar 

  • Calado L, Silveira ICA, Gangopadhyay A et al (2010) Eddy–induced upwelling off Cape São Tomé (22 S, Brazil). Cont Shelf Res 30:1181–1188

    Article  Google Scholar 

  • Calbet A, Landry MR (2004) Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems. Limnol Oceanogr 49:51–57

    Article  CAS  Google Scholar 

  • Calliari D, Brugnoli E, Ferrari G et al (2009) Phytoplankton distribution and production along a wide environmental gradient in the South–West Atlantic off Uruguay. Hydrobiologia 620:47–61

    Article  CAS  Google Scholar 

  • Campos EJD, Gonçalves JE, Ikeda Y (1995) Water mass characteristics and geostrophic circulation in the South Brazil bight – summer of 1991. J Geophys Res 100:18537–18550

    Article  Google Scholar 

  • Carr ME, Friedrichs MAM, Schmeltz M et al (2006) A comparison of global estimates of marine primary production from ocean color. Deep-Sea Res II 53:741–770

    Article  Google Scholar 

  • Castro BM, Miranda LB (1998) Physical oceanography of the western Atlantic continental shelf located between 4N and 34 S. In: Robinson AR, Brink KH (eds) The sea, vol 11. Wiley, New York, pp 209–251

    Google Scholar 

  • Castro BM, Brandini FP, MAS P–V et al (2006) Multidisciplinary oceanographic processes on the Western Atlantic continental shelf located between 4°N and 34°S. In: Robinson AR, Brink KH (eds) The sea, vol 14. Wiley, New York, pp 259–293

    Google Scholar 

  • Ciotti AM, Odebrecht C, Moller Jr O (1992) South Brazilian continental shelf: chlorophyll–a, primary production, and the relationship between abiotic and biotic parameters. In: Falkowski PG, Woodhead AD, Vivirito K (eds) Primary productivity and biogeochemical cycles in the sea. Springer, Boston, pp 507–508

    Chapter  Google Scholar 

  • Coló Giannini MF, Ciotti AM (2016) Parameterization of natural phytoplankton photo–physiology: effects of cell size and nutrient concentration. Limnol Oceanogr 61:1495–1512

    Article  CAS  Google Scholar 

  • Coló Giannini MF, Garcia CAE, Tavano VM et al (2013) Effects of low–salinity and high–turbidity waters on empirical ocean colour algorithms: an example for Southwestern Atlantic waters. Cont Shelf Res 59:84–96

    Article  Google Scholar 

  • Devred E, Sathyendranath S, Platt T (2007) Delineation of ecological provinces using ocean colour radiometry. Mar Ecol Prog Ser 346:1–13

    Article  CAS  Google Scholar 

  • Dogliotti AI, Lutz VA, Segura V (2014) Estimation of primary production in the southern Argentine continental shelf and shelf–break regions using field and remote sensing data. Remote Sens Environ. https://doi.org/10.1016/j.rse.2013.09.021

  • Dogliotti AI, Ruddick K, Guerrero R (2016) Seasonal and inter–annual turbidity variability in the Río de la Plata from 15 years of MODIS: El Niño dilution effect. Est Coastal Shelf Sci 182:27–39

    Article  Google Scholar 

  • Dugdale RC, Goering JJ (1967) Uptake of new and regenerated forms of nitrogen in primary productivity. Limnol Oceanogr 12(2):196–206

    Article  CAS  Google Scholar 

  • Dugdale RC, Wilkerson FP (1986) The use of 15N to measure nitrogen uptake in eutrophic oceans: experimental conditions. Limnol Oceanogr 31:673–689

    Article  CAS  Google Scholar 

  • El–Sayed SZ (1967) On the productivity of the Southwest Atlantic Ocean and the waters West of the Antarctic Peninsula. In: Schmitt W, Llano GA (eds) Biology of the Antarctic seas III, Antarctic research series, vol 11. Am Geophys Society, Washington, pp 15–47

    Google Scholar 

  • Emílsson I (1961) The shelf and coastal waters off southern Brazil. Bol Inst Oceanogr 11(2):101–112. https://doi.org/10.1590/S0373–55241961000100004

    Article  Google Scholar 

  • Eppley RW, Peterson BJ (1979) Particulate organic matter flux and planktonic new production in the deep ocean. Nature 282(5740):677–680. https://doi.org/10.1038/282677a0

    Article  Google Scholar 

  • Gaarder T, Gran HH (1927) Investigations of the production of plankton in the Oslo Fjord. Rapp P v Reun Cons Int Explor Mer 42:1–48

    Google Scholar 

  • Gaeta SA, Ribeiro SMS, Metzler PM et al (1999) Environmental forcing on phytoplankton biomass and primary productivity of the coastal ecosystem in Ubatuba region, Southern Brazil. Rev Bras Oceanogr 47(1):11–27

    Article  Google Scholar 

  • Garcia CAE, Garcia VMT, McClain CR (2005) Evaluation of SeaWiFS chlorophyll algorithms in the southwestern Atlantic and Southern oceans. Remote Sens Environ 95:125–137. https://doi.org/10.1016/j.rse.2004.12.006

    Article  Google Scholar 

  • Garcia VMT, Signorini S, Garcia CAE et al (2006) Empirical and semi–analytical chlorophyll algorithms in the southwestern Atlantic coastal region (25–40°S and 60–45°W). Int J Remote Sens 27(8):1539–1562. https://doi.org/10.1080/01431160500382857

    Article  Google Scholar 

  • Garcia VMT, Garcia CAE, Mata MM et al (2008) Environmental factors controlling the phytoplankton blooms at the Patagonia shelf–break in spring. Deep-Sea Res I 55:1150–1166

    Article  Google Scholar 

  • Geider RJ, Osborne BA (1992) Algal photosynthesis: the measurement of algal gas exchange. In: Dring MJ, Melkonian M (eds) Current phycology, vol 2. Chapman and Hall, New York, p 256

    Google Scholar 

  • Gómez MI, Piola A, Kattner G et al (2011) Biomass of autotrophic dinoflagellates under weak vertical stratification and contrasting chlorophyll levels in subantarctic shelf waters. J Plankton Res 33:1304–1310

    Article  CAS  Google Scholar 

  • Gonzalez–Rodriguez E (1994) Yearly variation in primary productivity of marine phytoplankton from Cabo Frio (RJ, Brazil) region. Hydrobiologia 294(2):145–156

    Article  Google Scholar 

  • Gonzalez–Rodriguez E, Valentin JL, Andrè DL et al (1992) Upwelling and downwelling at Cabo Frio (Brazil): comparison of biomass and primary production. J Plankton Res 14(2):289–306

    Article  Google Scholar 

  • González–Silvera A (1994) Modelos Semi–Analíticos para estimar la Producción Primária del Fitopláncton a través de Sensoriamento Remoto: Una aplicación en el ámbito regional. MSc Dissertation, Federal University of Rio Grande

    Google Scholar 

  • Häder DP, Villafañe VE, Helbling EW (2014) Productivity of aquatic primary producers under global climate change. Photochem Photobiol Sci 13:1370–1392

    Article  CAS  PubMed  Google Scholar 

  • Hama T, Miyazaki T, Ogawa Y et al (1983) Measurement of photosynthetic production of a marine phytoplankton population using a stable 13C isotope. Mar Biol 73:31–36

    Article  CAS  Google Scholar 

  • Helbling EW, Buma AGJ, de Boer MK et al (2001) In situ impact of solar ultraviolet radiation on photosynthesis and DNA in temperate marine phytoplankton. Mar Ecol Prog Ser 211(1):43–49

    Article  CAS  Google Scholar 

  • Helbling EW, Barbieri ES, Marcoval MA et al (2005) Impact of solar ultraviolet radiation on marine phytoplankton from Patagonia. Photochem Photobiol 81:807–818

    Article  CAS  PubMed  Google Scholar 

  • Hu C, Lee Z, Franz B (2012) Chlorophyll a algorithms for oligotrophic oceans: a novel approach based on three–band reflectance difference. J Geophys Res 117:C01011. https://doi.org/10.1029/2011JC007395

    Article  CAS  Google Scholar 

  • Johnsen G, Sakshaug E (2007) Biooptical characteristics of PSII and PSI in 33 species (13 pigment groups) of marine phytoplankton, and the relevance for pulse–amplitude–modulated and fast–repetition–rate–Fluorometry. J Phycol 43:1236–1251

    Article  CAS  Google Scholar 

  • Kiørboe T (1993) Turbulence phytoplankton cell size and the structure of marine pelagic food webs. Adv Mar Biol 29:1–72

    Article  Google Scholar 

  • Kolber Z, Falkowski P (1993) Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnol Oceanogr 38:1646–1665

    Article  CAS  Google Scholar 

  • Le Quéré C, Harrison PH, Prentice C et al (2005) Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models. Glob Change Biol 11:2016–2040. https://doi.org/10.1111/j.1365–2486.2005.1004.x

    Article  Google Scholar 

  • Longhurst A, Sathyendranath S, Platt T et al (1995) An estimate of global primary production in the ocean from satellite radiometer data. J Plankton Res 17:1245–1271

    Article  Google Scholar 

  • Lorenzzetti JA, Gaeta SA (1996) The Cape Frio upwelling effect over the South Brazil Bight northern sector shelf Waters: a study using AVHRR images. ISPRS Archives, vol XXXI, PartB7:448–453

    Google Scholar 

  • Lutz VA, Sathyendranath S, Head EJH et al (1998) Differences between in vivo absorption and fluorescence excitation spectra in natural samples of phytoplankton. J Phycol 34:214–227

    Article  Google Scholar 

  • Lutz VA, Segura V, Dogliotti AI et al (2010) Primary production in the Argentine sea during spring estimated by field and satellite models. J Plankton Res 32:181–195

    Article  CAS  Google Scholar 

  • Martínez G, Brugnoli E, Hernández J et al (2005) How valid is the SeaWiFS estimation of chlorophyll–a at the Río de la Plata estuary and its area of influence? In: Frouin R, Kawamura H, Pan D (eds) Active and passive remote sensing of the oceans proc of SPIE, vol 5656. https://doi.org/10.1117/12.582665

    Chapter  Google Scholar 

  • Metzler PM, Glibert PM, Gaeta AS et al (1997) New and regenerated production in the South Atlantic off Brazil. Deep-Sea Res I 44(3):363–384

    Article  CAS  Google Scholar 

  • Moreau S, Mostajir B, Bélanger S et al (2015) Climate change enhances primary production in the Western Antarctic Peninsula. Glob Chang Biol. https://doi.org/10.1111/gcb.12878

  • Morel A, Claustre H, Antoine D, Gentili B (2007) Natural variability of bio-optical properties in Case 1 waters: attenuation and reflectance within the visible and near-UV spectral domains, as observed in the South Pacific and Mediterrranean waters. Biogeosciences 4:913–925

    Google Scholar 

  • Negri RM, Akselman R, Carignan MO et al (2010) Plankton community and environmental conditions during a mid shelf waters intrusion and upwelling at the EPEA atation (Argentina). In: Abstracts of the meeting of the Americas AGU, Foz do Iguazu, Brazil, 8–10 August 2010

    Google Scholar 

  • Negri RM, Mollinari G, Carignan M et al (2016) Ambiente y Plancton en la Zona Común de Pesca Argentino–Uruguaya en un escenario de cambio climático (marzo 2014). Rev Frente Mar 24:251–316

    Google Scholar 

  • Piola A, Campos EJD, Môller Jr OO et al (2000) Subtropical shelf front off Eastern South America. J Geophys Res 107:6565–6578

    Article  Google Scholar 

  • Platt T, Jassby AD (1976) The relationship between photosynthesis and light for natural assemblages of coastal marine phytoplankton. J Phycol 12:421–430

    Google Scholar 

  • Platt T, Sathyendranath S (1988) Oceanic primary production: estimation by remote sensing at local and regional scales. Science 241:1613–1620

    Article  CAS  PubMed  Google Scholar 

  • Platt T, Sathyendranath S (2009) Light and marine primary production. Seibutsu Kenkyusha, Tokyo, p 174

    Google Scholar 

  • Platt T, Sathyendranath S, Forget M–H et al (2008) Operational mode estimation of primary production at large geographical scales. Remote Sens Environ 112:3437–3448

    Article  Google Scholar 

  • Redfield AC (1934) On the proportions of organic derivatives in sea water and their relation to the composition of plankton. In: Daniel RJ (ed) James Johnstone memorial volume. University Press of Liverpool, Liverpool, pp 177–192

    Google Scholar 

  • Regaudie–de–Gioux A, Lasternas S, Agustí S et al (2014) Comparing marine primary production estimates through different methods and development of conversation equations. Front Mar Sci. https://doi.org/10.3389/fmars.2014.00019

  • Sabatini ME, Akselman R, Reta R et al (2012) Spring plankton communities in the southern Patagonian shelf: hydrography, mesozooplankton patterns and trophic relationships. J Mar Syst 94:33–51

    Article  Google Scholar 

  • Sabine CL, Feely RA, Gruber N et al (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371

    Article  CAS  Google Scholar 

  • Saldanha–Corrêa FMP, Gianesella SMF (2008) Produção Primária e Fitoplâncton. In: Pires–Vanin AMS (ed) Oceanografia de um ecossistema subtropical. EDUSP, São Paulo, pp 223–251

    Google Scholar 

  • Sarmiento JL, Bender M (1994) Carbon biogeochemistry and climate change. Photos Res 39:209–234. https://doi.org/10.1007/bf00014585

    Article  CAS  Google Scholar 

  • Schloss IR, Ferreyra GA, Ferrario ME et al (2007) Role of plankton communities in pCO2 sea–air variation in the southwestern Atlantic Ocean. Mar Ecol Prog Ser 332:93–106

    Article  CAS  Google Scholar 

  • Segura V, Lutz VA, Dogliotti AI et al (2013) Phytoplankton functional types and primary production in the Argentine sea. Mar Ecol Prog Ser 491:15–31

    Article  Google Scholar 

  • Steeman Nielsen E (1952) The use of radioactive carbon (14C) for measuring production in the sea. J Cons Perm Int Explor Mer 18:117–140. https://doi.org/10.1093/icesjms/18.2.117

    Article  Google Scholar 

  • Sugget DJ, MacIntyre HL, Geider RJ (2004) Evaluation of biophysical and optical determinations of light absorption by photosystem II in phytoplankton. Limnol Oceanogr Methods 2:316–332

    Article  Google Scholar 

  • Takahashi T (2004) The fate of industrial carbon dioxide. Science 305:352–353

    Article  CAS  PubMed  Google Scholar 

  • Tilstone GH, Lange PK, Misra A et al (2017) Micro–phytoplankton photosynthesis, primary production and potential export production in the Atlantic Ocean. Prog Oceanogr. https://doi.org/10.1016/j.pocean.2017.01.006

  • Vernet M, Smith RC (2007) Measuring and modeling primary production in marine pelagic ecosystems. In: Fahey TJ, Knapp AK (eds) Principles and standards for measuring primary production. Oxford University Press, New York. https://doi.org/10.1093/acprof:oso/9780195168662.003.0009

    Chapter  Google Scholar 

  • Villafañe VE, Sundbäck K, al FFL (2003) Photosynthesis in the aquatic environment as affected by UVR. In: Helbling EW, Zagarese HE (eds) UV effects in aquatic organisms and ecosystems. Comprehensive series in photochemical and Photobiological sciences. The Royal Society of Chemistry, Cambridge, pp 357–397

    Google Scholar 

  • Villafañe VE, Barbieri ES, Helbling EW (2004a) Annual patterns of ultraviolet radiation effects on temperate marine phytoplankton off Patagonia, Argentina. J Plankton Res 26:167–174

    Article  CAS  Google Scholar 

  • Villafañe VE, Marcoval MA, Helbling EW (2004b) Photosynthesis versus irradiance characteristics in phytoplankton assemblages off Patagonia (Argentina): temporal variability and solar UVR effects. Mar Ecol Prog Ser 284:23–34

    Article  Google Scholar 

Download references

Acknowledgments

Primary production estimations are labor intensive, hence, the authors wished to thank all the many colleagues that have collaborated throughout the years to produce the results here shown for the region. The financial support from all the institutions involved and the grants held by all the authors are acknowledged. We want to thank the reviewers of the work for their useful comments. This is INIDEP contribution # 2120 .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivian Lutz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lutz, V. et al. (2018). Overview on Primary Production in the Southwestern Atlantic. In: Hoffmeyer, M., Sabatini, M., Brandini, F., Calliari, D., Santinelli, N. (eds) Plankton Ecology of the Southwestern Atlantic. Springer, Cham. https://doi.org/10.1007/978-3-319-77869-3_6

Download citation

Publish with us

Policies and ethics