Skip to main content

Satellite-Measured Phytoplankton and Environmental Factors in North Patagonian Gulfs

  • Chapter
  • First Online:

Abstract

An extensive series of high-resolution satellite images from the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS, 2000–2006) was used in the characterization of the phytoplankton biomass seasonal cycle of the north Patagonian gulfs (NPG). The NPG system is formed by the San Matías, San José, and Nuevo gulfs (between 40°47′and 43°00′S and 63°00′ and 65°1.2′W) and is an area of ecological importance and of great significance for marine conservation in the Patagonian Argentinean Shelf. The spatio temporal variability of phytoplankton biomass in each of these environments was characterized by chlorophyll a data from satellite images (Chla-sat). The observed seasonal variability was explained by factors influencing the growth of phytoplankton: photosynthetically available radiation (PAR from the SeaWiFS sensor) and sea surface temperature (SST from the Advanced Very High-Resolution Radiometer, AVHRR). In situ temperature, nutrient, and chlorophyll a concentration data from oceanographic cruises carried out in Nuevo (four cruises: 1982–1983), San José (four cruises: 1984–1985), and San Matías (four cruises: 1986–1994) gulfs were also used to explain the observed patterns. Cycles of phytoplankton and SST over the NPG are typical of temperate waters. However, Chla-sat cycles were different among gulfs. At the same time, Chla-sat cycles over the gulfs were different from that over the adjacent middle continental shelf. SMG was characterized by a bimodal cycle, although in winter mean values were higher than the mean concentration for the whole area. SJG was characterized by a unimodal cycle with relatively high values of chlorophyll a concentration in spring-summer. NG showed a bimodal cycle with maximum values in autumn and spring and minimum values in winter and summer. Particularities of each gulf are discussed in relation to the seasonal hydrographic characteristics of the water column (temperature and nutrients) and in the context of the Patagonian shelf ecosystem.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acha EM, Mianzan HW, Guerrero RA et al (2004) Marine fronts at the continental shelves of austral South America. Physical and ecological processes. J Mar Syst 44:83–105

    Article  Google Scholar 

  • Amoroso RO, Gagliardini DA (2010) Inferring complex hydrographic processes using remote-sensed images: turbulent fluxes in the Patagonian gulfs and implications for scallop metapopulation dynamics. J Coast Res 262:320–332. https://doi.org/10.2112/08–1095.1

    Article  Google Scholar 

  • Amoroso RO, Parma AM, Orensanz JM, Gagliardini DA (2011) Zooming the macroscope: medium-resolution remote sensing as a framework for the assessment of a small-scale fishery. ICES J Mar Sci 68:696–706. https://doi.org/10.1093/icesjms/fsq162

    Article  Google Scholar 

  • Argüelles MB, Fazio A, Fiorito C et al (2016) Diving behavior of southern right whales (Eubalaena australis) in a maritime traffic area in Patagonia, Argentina. Aquat Mamm 42:104–108. https://doi.org/10.1578/AM.42.1.2016.104

    Article  Google Scholar 

  • Carreto JI, Verona CA, Casal A, Laborde MA (1974) Fitoplancton, pigmentos y condiciones ecológicas del Golfo San Matías: Marzo 1971 (I), Mayo 1971 (II) y Noviembre de 197I (III). Anal Inf Com Inv Cient La Plata, Argentina, pp 1–76

    Google Scholar 

  • Carreto JI, Benavides HR, Negri RM et al (1986) Toxic red-tide in the Argentine Sea. Phytoplankton distribution and survival of the toxic dinoflagellate Gonyaulax excavata in a frontal area. J Plankton Res 8:15–28

    Article  Google Scholar 

  • Carreto JI, Montoya NG, Carignan MO et al (2016) Environmental and biological factors controlling the spring phytoplankton bloom at the Patagonian shelf-break front – degraded fucoxanthin pigments and the importance of microzooplankton grazing. Prog Oceanogr 146:1–21. https://doi.org/10.1016/j.pocean.2016.05.002

    Article  Google Scholar 

  • Chalcobsky BA, Crespo EA, Coscarella MA (2017) Whale-watching in Patagonia: what regulation scheme should be implemented when the socio-ecological system is changing? Mar Policy 75:165–173. https://doi.org/10.1016/j.marpol.2016.11.010

    Article  Google Scholar 

  • Charpy LJ, Charpy-Roubaud CJ (1980a) La production primaire des eaux du golfe San José (Peninsula Valdés, Argentina): populations phytoplanctoniques et composition du seston. Hydrobiologia 75:215–224

    Article  Google Scholar 

  • Charpy LJ, Charpy-Roubaud CJ (1980b) La production primaire des eaux du golfe San José (Peninsula Valdés, Argentina): estimation de la production phytoplanctonique annuelle. Hydrobiologia 75:225–229

    Article  Google Scholar 

  • Charpy-Roubaud CJ, Charpy LJ, Maestrini SY (1982) Fertilité des eaux cotières nord-patagoniques: facteurs limitant la production du phytoplancton e potentialités d’exploitation mytilicole. Oceanol Acta 2(5):188–197

    Google Scholar 

  • Charpy-Roubaud CJ, Charpy LJ, Maestrini SY (1983) Nutrient enrichments of waters of “Golfo de San José” (Argentina, 42°S), growth and species selection of phytoplankton. Mar Ecol 4(1):1–18

    Article  CAS  Google Scholar 

  • Dogliotti AI, Schloss IR, Almandoz GO, Gagliardini DA (2009) Evaluation of SeaWiFS and MODIS chlorophyll a products in the Argentinean Patagonian Continental Shelf (38°S–55°S). Int J Remote Sens 30:251–273. https://doi.org/10.1080/01431160802311133

    Article  Google Scholar 

  • Espinosa-Carreon L, Beier E., Ocampo Torres F. et al (2004) Seasonal and interannual variability of satellite-derived chlorophyll pigment, surface height, and temperature off Baja California. J Geophys Res 109:1–20. https://doi.org/10.1029/2003JC002105

  • Esteves JL, Santinelli N, Sastre V, Díaz R, Rivas O (1992) A toxic dinoflagellate bloom and PSP production associated with upwelling in Golfo Nuevo, Patagonia, Argentina. Hydrobiologia 242:115–222

    Article  CAS  Google Scholar 

  • Esteves JL, Solís ME, Sastre V, Santinelli N, Gil M et al (1996) Evaluación de la contaminación urbana de la Bahía de San Antonio. Informes técnicos del Plan de Manejo Integrado de la Zona Costera Patagónica. Fundación Patagonia Natural, Puerto Madryn

    Google Scholar 

  • Gagliardini DA, Rivas AL (2004) Environmental characteristics of San Matías Gulf obtained from Landsat-TM and ETM+ Data. Gayana (Concepción) 68:1–10. https://doi.org/10.4067/S0717-65382004000200034

    Article  Google Scholar 

  • Gagliardini DA, Amoroso RO, Dell’ Arciprete OP, Yorio P, Orensanz JM (2004) Detection of small-scale coastal oceanographic processes through Landsat-TM/ETM+ images: implications for the study of biological processes along the Patagonian Coasts of Argentina. Gayana (Concepción) 68:194–200. https://doi.org/10.4067/S0717-65382004000200035

    Article  Google Scholar 

  • Garcia V, Garcia C, Mata M et al (2008) Environmental factors controlling the phytoplankton blooms at the Patagonia shelf-break in spring. Deep Sea Res Part I Oceanogr Res Pap 55:1150–1166. https://doi.org/10.1016/j.dsr.2008.04.011

    Article  Google Scholar 

  • Glorioso PD, Flather RA (1997) The Patagonian Shelf tides. Prog Oceanogr 40:263–283. https://doi.org/10.1016/S0079-6611(98)00004-4

    Article  Google Scholar 

  • Hoffmeyer MS (1994) Seasonal succession of Copepoda in the Bahía Blanca estuary. Hydrobiologia 292(293):303–308

    Article  Google Scholar 

  • IOCCG (2008) Why ocean colour? The societal benefits of ocean-colour technology. In Platt T, Hoepffner N, Stuart V, Brown C (eds) Reports of the International Ocean-Colour Coordinating Group, No. 7, IOCCG, Dartmouth, Canada

    Google Scholar 

  • Kelly KA (1985) Separating clouds from ocean in infrared images. Remote Sens Environ 17:67–83

    Article  Google Scholar 

  • Krepper C, Bianchi AA (1982) Balance calórico del Mar Epicontinental Argentino. Acta Oceanogr Arg 3(1):119–133

    Google Scholar 

  • Lutz VA, Segura V, Dogliotti AI et al (2010) Primary production in the Argentine Sea during spring estimated by field and satellite models. J Plankton Res 32:181–195. https://doi.org/10.1093/plankt/fbp117

    Article  CAS  Google Scholar 

  • Mann KH, Lazier JR (2006) Dynamics of marine ecosystems. Biological-physical interactions in the oceans, 3rd edn. Blackwell Science Publications, Cambridge, MA

    Google Scholar 

  • McClain EP, Pichel WG, Walton CC (1985) Comparative performance of AVHRR-based multichannel sea surface temperature. J Geophys Res 90:11587–11601

    Article  Google Scholar 

  • Ocampo Reinaldo M, González R, Williams G et al (2013) Spatial patterns of the Argentine hake Merluccius hubbsi and oceanographic processes in a semi-enclosed Patagonian ecosystem. Mar Biol Res 9:394–406. https://doi.org/10.1080/17451000.2012.739700

    Article  Google Scholar 

  • O’Reilly JEO, Maritorena S, Siegel DA et al (2000) Ocean color chlorophyll-a algorithms for SeaWiFS, OC2 and OC4: version 4. SeaWiFS Postlaunch Technical Report Series Volume 11. SeaWiFS Postlaunch Calibration and Validation Analyses, Part 3. S. B. Hooker and E. R. Firestone

    Google Scholar 

  • Orensanz JM, Parma AM, Turk T, Valero J (2006) Dynamics, assessment and management of exploited natural populations. In: Shumway S, Parsons GJ (eds) Scallops: biology, ecology and aquaculture, 2nd edn. Elsevier, Amsterdam, pp 765–868

    Chapter  Google Scholar 

  • Palma ED, Matano RP, Piola AR (2004) A numerical study of the Southwestern Atlantic Shelf circulation: Barotropic response to tidal and wind forcing. J Geophys Res 109:C08014. https://doi.org/10.1029/2004JC002315

    Article  Google Scholar 

  • Piola AR, Scasso L (1988) Circulación en el golfo San Matías. Geoacta 15:33–51

    Google Scholar 

  • Pisoni JP, Rivas AL, Piola AR (2014) Satellite remote sensing reveals coastal upwelling events in the San Matías Gulf? Northern Patagonia. Remote Sens Environ 152:270–278. https://doi.org/10.1016/j.rse.2014.06.019

    Article  Google Scholar 

  • Pisoni JP, Rivas AL, Piola AR (2015) On the variability of tidal fronts on a macrotidal continental shelf, Northern Patagonia, Argentina. Deep Res Part II Top Stud Oceanogr 119:61–68. https://doi.org/10.1016/j.dsr2.2014.01.019

    Article  Google Scholar 

  • Popovich CA, Marcovecchio JE (2008) Spatial and temporal variability of phytoplankton and environmental factors in a temperate estuary of South America (Atlantic coast, Argentina). Cont Shelf Res 28:236–244. https://doi.org/10.1016/j.csr.2007.08.001

    Article  Google Scholar 

  • Ramírez FC (1996) Composición, abundancia y variación estacional del zooplancton de red del Golfo San Matías. Frente Marítimo (Sec A) 16:157–167

    Google Scholar 

  • Rivas AL (1990) Análisis estacional de la estructura termohalina en el Golfo San José, Argentina. Geoacta 17(1):37–48

    Google Scholar 

  • Rivas AL (2010) Spatial and temporal variability of satellite-derived sea surface temperature in the southwestern Atlantic Ocean. Cont Shelf Res 30:752–760

    Article  Google Scholar 

  • Rivas A, Beier E (1990) Temperature and salinity fields in the Northpatagonic Gulfs. Oceanol Acta 13:15–20

    Google Scholar 

  • Rivas AL, Pisoni JP (2010) Identification, characteristics and seasonal evolution of surface thermal fronts in the Argentinean Continental Shelf. J Mar Syst 79:134–143. https://doi.org/10.1016/j.jmarsys.2009.07.008

    Article  Google Scholar 

  • Rivas A, Ripa P (1989) Variación estacional de la estructura termohalina de Golfo Nuevo, Argentina. Geofis Int 28:3–24

    Google Scholar 

  • Rivas AL, Dogliotti AI, Gagliardini DA (2006) Seasonal variability in satellite-measured surface chlorophyll in the Patagonian Shelf. Cont Shelf Res 26:703–720. https://doi.org/10.1016/j.csr.2006.01.013

    Article  Google Scholar 

  • Romero SI, Piola AR, Charo M, Garcia CAE (2006) Chlorophyll-a variability off Patagonia based on SeaWiFS data. J Geophys Res C05021. doi:https://doi.org/10.1029/2005JC003244

  • Romero MA, Reinaldo MO, Williams G et al (2013) Understanding the dynamics of an enclosed trawl demersal fishery in Patagonia (Argentina): a holistic approach combining multiple data sources. Fish Res 140:73–82. https://doi.org/10.1016/j.fishres.2012.12.002

    Article  Google Scholar 

  • Sabatini M, Martos P (2002) Mesozooplankton features in a frontal area off northern Patagonia (Argentina) during spring 1995 and 1998. Sci Mar 66:215–232

    Article  Google Scholar 

  • Santinelli NH (2008) Fitoplancton de un ambiente costero sometido a perturbación antrópica: Bahía Nueva, Provincia de Chubut. Tesis Doctoral, Universidad Nacional de la Patagonia San Juan Bosco, Trelew, Argentina

    Google Scholar 

  • Sastre AV, Santinelli NH, Esteves JL, Ferrario ME (2001) Aspectos ecológicos de especies de Pseudo-nitzschia en aguas costeras patagónicas (Argentina). In: Alveal K, Antezana T (eds) Sustentabilidad de la biodiversidad. Universidad de Concepción, Concepción, pp 217–235

    Google Scholar 

  • Scasso ML, Piola AR (1988) Intercambio neto de agua entre el mar y la atmósfera en el Golfo San Matías. Geoacta 15(1):13–31

    Google Scholar 

  • Servicio de Hidrografía Naval (2017). Salida y puesta del sol http://www.hidro.gov.ar. Accessed 22 Jun 2017

  • Solís ME (1998) Monitoring in Nuevo Gulf (Argentina): Analysis of oceanographic data by geographic information systems (GIS). M. Sc. Thesis D.E.W. 021. Unesco-IHE Delft. The Netherlands

    Google Scholar 

  • Strickland JDH, Parsons TR (1972) A practical handbook of the seawater analysis. 2nd edn. Bull J Fish Res Bd Can 167: 311 pp.

    Google Scholar 

  • Svendsen GM, Romero MA, Williams GN et al (2015) Environmental niche overlap between common and dusky dolphins in North Patagonia, Argentina. PLoS One 10:1–20. https://doi.org/10.1371/journal.pone.0126182

    Article  CAS  Google Scholar 

  • Sverdrup HU (1953) On conditions for the vernal blooming of phytoplankton. J Cons Perm Int Exp Mer 18:287–295

    Article  Google Scholar 

  • Tonini MH, Palma ED (2017) Tidal dynamics on the North Patagonian Argentinean Gulfs. Estuar Coast Shelf Sci 189:115–130. https://doi.org/10.1016/j.ecss.2017.02.026

    Article  Google Scholar 

  • Tonini MH, Palma ED, Piola AR (2013) A numerical study of gyres, thermal fronts and seasonal circulation in austral semi-enclosed gulfs. Cont Shelf Res 65:97–110. https://doi.org/10.1016/j.csr.2013.06.011

    Article  Google Scholar 

  • Williams GN (2011) Caracterización ambiental del golfo San Matías mediante sensores remotos y parámetros océanográficos. Relación con la distribución y abundancia de los recursosbiológicos de interés pesquero. Tesis Doctoral, Universidad Nacional del Comahue, San Carlos de Bariloche, Argentina

    Google Scholar 

  • Williams GN, Dogliotti AI, Zaidman P et al (2013) Assessment of remotely-sensed sea-surface temperature and chlorophyll-a concentration in San Matías Gulf (Patagonia, Argentina). Cont Shelf Res 52:159–171. https://doi.org/10.1016/j.csr.2012.08.014

    Article  Google Scholar 

  • Wilson C, Sastre AV, Hoffmeyer MS et al (2016) Southern right whale (Eubalaena australis) calf mortality at Península Valdés, Argentina: are harmful algal blooms to blame? Mar Mamm Sci 32:423–451. https://doi.org/10.1111/mms.12263

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We dedicate this chapter to Dr. Domingo Antonio Gagliardini who was a pioneer in the field of marine remote sensing in Argentina. The authors thank the Comisión Nacional de Actividades Espaciales (CONAE, Argentina) for the provided images and the Ocean Biology Processing Group (Code 614.2) at the GSFC, Greenbelt, MD20 771, for the distribution of the ocean color data. We also thank M. Sapoznik, N. Pérez de la Torre, and M.R. Marin for their assistance in processing the satellite images and N. Glembocki for language improvement. An anonymous reviewer helped to improve the manuscript. The work was supported by funding from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, Argentina) and the Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, Argentina) through projects PICT 2003 N° 15221, 2006 N° 1575, 2006 N° 649, and 2013 N°0687.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela N. Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Williams, G.N., Solís, M.E., Esteves, J.L. (2018). Satellite-Measured Phytoplankton and Environmental Factors in North Patagonian Gulfs. In: Hoffmeyer, M., Sabatini, M., Brandini, F., Calliari, D., Santinelli, N. (eds) Plankton Ecology of the Southwestern Atlantic. Springer, Cham. https://doi.org/10.1007/978-3-319-77869-3_15

Download citation

Publish with us

Policies and ethics