Skip to main content

Advanced Procedure for Estimation of Phytoplankton Fluorescence Quantum Yield Using Remote Sensing Data: A Comparative Study of the Amundsen Sea Polynyas

  • Conference paper
  • First Online:
Physical and Mathematical Modeling of Earth and Environment Processes (PMMEEP 2017)

Abstract

The algorithm for estimation of the quantum yield of phytoplankton fluorescence from the remote sensing satellite of the MODIS tool is discussed in the paper. There is an example of manifestation of the iron limitation in the Amundsen Sea. Amundsen Sea encloses two polynyas: Fe-limited ASP (Amundsen Sea Polynya) and Fe-replete PIP (Pine Island Polynya). We present a procedure for comparing the mean values of the quantum yield of phytoplankton fluorescence in these regions and the requirements for it. To meet these requirements, the data of two satellite systems were analyzed and compared: MODIS and AVHRR. Analysis of the data made it possible to observe the differences in the mean values of the quantum yield of phytoplankton fluorescence in these two regions during the bloom period of the Amundsen Sea phytoplankton in 2012.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sarmiento, J.L., Toggweiler, J.R.: A new model for the role of the oceans in determining atmospheric PCO2. Nature 308(5960), 621–624 (1984)

    Article  ADS  Google Scholar 

  2. Sarmiento, J.L., et al.: Response of ocean ecosystems to climate warming. Glob. Biogeochem. Cycles 18(3) (2004)

    Google Scholar 

  3. Sigman, D.M., Boyle, E.A.: Glacial/interglacial variations in atmospheric carbon dioxide. Nature 407(6806), 859–869 (2000)

    Article  ADS  Google Scholar 

  4. Rignot, E.: Changes in West Antarctic ice stream dynamics observed with ALOS PALSAR data. Geophys. Res. Lett. 35(12) (2008)

    Google Scholar 

  5. Arrigo, K.R., Lowry, K.E., van Dijken, G.L.: Annual changes in sea ice and phytoplankton in polynyas of the Amundsen Sea, Antarctica. Deep Sea Res. Part II Topical Stud. Oceanogr. 71, 5–15 (2012)

    Article  ADS  Google Scholar 

  6. Alderkamp, A.-C., et al.: Fe availability drives phytoplankton photosynthesis rates during spring bloom in the Amundsen Sea Polynya, Antarctica. Elem. Sci. Anth. 3 (2015)

    Google Scholar 

  7. Gerringa, L.J.A., et al.: Iron from melting glaciers fuels the phytoplankton blooms in Amundsen Sea (Southern Ocean): iron biogeochemistry. Deep Sea Res. Part II Topical Stud. Oceanogr. 71, 16–31 (2012)

    Article  ADS  Google Scholar 

  8. Krause, G.H., Weis, E.: Chlorophyll fluorescence and photosynthesis: the basics. Ann. Rev Plant Biol. 42(1), 313–349 (1991)

    Article  Google Scholar 

  9. Falkowski, P.G., Greene, R.M., Geider, R.J.: Physiological limitations on phytoplankton productivity in the ocean. Oceanography 5(2), 84–91 (1992)

    Article  Google Scholar 

  10. Greene, R.M., et al.: Iron-induced changes in light harvesting and photochemical energy conversion processes in eukaryotic marine algae. Plant Physiol. 100(2), 565–575 (1992)

    Article  Google Scholar 

  11. Vassiliev, I.R., et al.: Effects of iron limitation on photosystem II composition and light utilization in Dunaliella tertiolecta. Plant Physiol. 109(3), 963–972 (1995)

    Article  Google Scholar 

  12. Greene, R.M., Geider, R.J., Falkowski, P.G.: Effect of iron limitation on photosynthesis in a marine diatom. Limnol. Oceanogr. 36(8), 1772–1782 (1991)

    Article  ADS  Google Scholar 

  13. Park, J., et al.: Light availability rather than Fe controls the magnitude of massive phytoplankton bloom in the Amundsen Sea polynyas, Antarctica. Limnol. Oceanogr. (2017)

    Google Scholar 

  14. https://www.ncei.noaa.gov

  15. Lin, H., et al.: The fate of photons absorbed by phytoplankton in the global ocean. Science 351(6270), 264–267 (2016)

    Article  ADS  Google Scholar 

  16. Huot, Y., Brown, C.A., Cullen, J.J.: New algorithms for MODIS sun-induced chlorophyll fluorescence and a comparison with present data products. Limnol. Oceanogr. Meth. 3(2), 108–130 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Russian Foundation for Basic Research (project No. 16-05-01110 A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor V. Fadeev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nikonova, E.E., Shirshin, E.A., Fadeev, V.V., Gorbunov, M.Y. (2018). Advanced Procedure for Estimation of Phytoplankton Fluorescence Quantum Yield Using Remote Sensing Data: A Comparative Study of the Amundsen Sea Polynyas. In: Karev, V., Klimov, D., Pokazeev, K. (eds) Physical and Mathematical Modeling of Earth and Environment Processes. PMMEEP 2017. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-319-77788-7_31

Download citation

Publish with us

Policies and ethics