Skip to main content

Metabolic Relationship between Cancer-Associated Fibroblasts and Cancer Cells

  • Chapter
  • 4358 Accesses

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1063))

Abstract

Cancer-associated fibroblasts (CAFs), a major component of the tumor microenvironment (TME), play an important role in cancer initiation, progression, and metastasis. Recent findings have demonstrated that the TME not only provides physical support for cancer cells, but also directs cell-to-cell interactions (in this case the interaction between cancer cells and CAFs). As cancer progresses, the CAFs also co evolve—transitioning from an inactivated state to an activated state. The elucidation and understanding of the interaction between cancer cells and CAFs will pave the way for new cancer therapies [1–3].

The TME is a heterogeneous environment consisting of fibroblasts, tumor-associated macrophages, adipocytes, an extracellular matrix, and mesenchymal stem cells [4]. The exact composition of each stroma varies depending on cancer and tissue type. To add to this variation, there is heterogeneity even within the CAF population itself. Different CAFs express different markers and influence stromal pro-tumorigenic capacity and cancer progression in diverse ways [5, 6].

This is a preview of subscription content, log in via an institution.

Abbreviations

α-SMA:

α-Smooth muscle actin

CAF:

Cancer-associated fibroblast

Cav-1:

Caveolin -1

CDE:

CAF-derived exosomes

EMT:

Epithelial-mesenchymal transition

FASN:

Fatty acid synthase

FH:

Fumarase

HIF-1:

Hypoxia-inducible factor-1

LDHA:

Lactate dehydrogenase A

MCT:

Monocarboxylate transporter

NF:

Normal fibroblasts

PDAC:

Pancreatic ductal adenocarcinoma

PKM2:

Pyruvate kinase isozymes M1/M2

PSC:

Pancreatic stellate cells

ROS:

Reactive oxygen species

SDH:

Succinate dehydrogenase

TCA:

Tricarboxylic acid

TGF-β:

Transforming growth factor beta

TME:

Tumor microenvironment

References

  1. Zhao, X., He, Y., & Chen, H. (2013). Autophagic tumor stroma: Mechanisms and roles in tumor growth and progression. International Journal of Cancer, 132(1), 1–8.

    Article  CAS  PubMed  Google Scholar 

  2. Martinez-Outschoorn, U. E., et al. (2010). Oxidative stress in cancer associated fibroblasts drives tumor-stroma co-evolution: A new paradigm for understanding tumor metabolism, the field effect and genomic instability in cancer cells. Cell Cycle, 9(16), 3256–3276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Gascard, P., & Tlsty, T. D. (2016). Carcinoma-associated fibroblasts: Orchestrating the composition of malignancy. Genes and Development, 30(9), 1002–1019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Spill, F., et al. (2016). Impact of the physical microenvironment on tumor progression and metastasis. Current Opinion in Biotechnology, 40, 41–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen, Z., et al. (1999). Expression of proinflammatory and proangiogenic cytokines in patients with head and neck cancer. Clinical Cancer Research, 5(6), 1369–1379.

    PubMed  CAS  Google Scholar 

  6. Sriram, G., Bigliardi, P. L., & Bigliardi-Qi, M. (2015). Fibroblast heterogeneity and its implications for engineering organotypic skin models in vitro. European Journal of Cell Biology, 94(11), 483–512.

    Article  CAS  PubMed  Google Scholar 

  7. Shimoda, M., Mellody, K. T., & Orimo, A. (2010). Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Seminars in Cell and Developmental Biology, 21(1), 19–25.

    Article  CAS  PubMed  Google Scholar 

  8. Rasanen, K., & Vaheri, A. (2010). Activation of fibroblasts in cancer stroma. Experimental Cell Research, 316(17), 2713–2722.

    Article  CAS  PubMed  Google Scholar 

  9. Xouri, G., & Christian, S. (2010). Origin and function of tumor stroma fibroblasts. Seminars in Cell and Developmental Biology, 21(1), 40–46.

    Article  CAS  PubMed  Google Scholar 

  10. Albini, A., & Sporn, M. B. (2007). The tumour microenvironment as a target for chemoprevention. Nature Reviews Cancer, 7(2), 139–147.

    Article  CAS  PubMed  Google Scholar 

  11. Shaykhiev, R., & Bals, R. (2007). Interactions between epithelial cells and leukocytes in immunity and tissue homeostasis. Journal of Leukocyte Biology, 82(1), 1–15.

    Article  CAS  PubMed  Google Scholar 

  12. Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.

    Article  CAS  PubMed  Google Scholar 

  13. Pietras, K., & Ostman, A. (2010). Hallmarks of cancer: Interactions with the tumor stroma. Experimental Cell Research, 316(8), 1324–1331.

    Article  CAS  PubMed  Google Scholar 

  14. DeFilippis, R. A., et al. (2014). Stress signaling from human mammary epithelial cells contributes to phenotypes of mammographic density. Cancer Research, 74(18), 5032–5044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hu, Y., et al. (2015). Fibroblast-derived exosomes contribute to chemoresistance through priming cancer stem cells in colorectal cancer. PLoS One, 10(5), e0125625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pavlides, S., et al. (2010). Loss of stromal caveolin-1 leads to oxidative stress, mimics hypoxia and drives inflammation in the tumor microenvironment, conferring the “reverse Warburg effect”: A transcriptional informatics analysis with validation. Cell Cycle, 9(11), 2201–2219.

    Article  CAS  PubMed  Google Scholar 

  17. Pavlides, S., et al. (2009). The reverse Warburg effect: Aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle, 8(23), 3984–4001.

    Article  CAS  PubMed  Google Scholar 

  18. Semenza, G. L. (2008). Tumor metabolism: Cancer cells give and take lactate. The Journal of Clinical Investigation, 118(12), 3835–3837.

    PubMed  PubMed Central  CAS  Google Scholar 

  19. Warburg, O., Wind, F., & Negelein, E. (1927). The metabolism of tumors in the body. The Journal of General Physiology, 8(6), 519–530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Crabtree, H. G. (1929). Observations on the carbohydrate metabolism of tumours. The Biochemical Journal, 23(3), 536–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Feron, O. (2009). Pyruvate into lactate and back: From the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiotherapy and Oncology, 92(3), 329–333.

    Article  CAS  PubMed  Google Scholar 

  22. Christofk, H. R., et al. (2008). The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature, 452(7184), 230–233.

    Article  CAS  PubMed  Google Scholar 

  23. Vander Heiden, M. G., Cantley, L. C., & Thompson, C. B. (2009). Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 324(5930), 1029–1033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shan, T., et al. (2017). Cancer-associated fibroblasts enhance pancreatic cancer cell invasion by remodeling the metabolic conversion mechanism. Oncology Reports, 37(4), 1971–1979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tape, C. J., et al. (2016). Oncogenic KRAS regulates tumor cell signaling via stromal reciprocation. Cell, 165(4), 910–920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chiche, J., Brahimi-Horn, M. C., & Pouyssegur, J. (2010). Tumour hypoxia induces a metabolic shift causing acidosis: A common feature in cancer. Journal of Cellular and Molecular Medicine, 14(4), 771–794.

    Article  CAS  PubMed  Google Scholar 

  27. Swietach, P., et al. (2010). New insights into the physiological role of carbonic anhydrase IX in tumour pH regulation. Oncogene, 29(50), 6509–6521.

    Article  CAS  PubMed  Google Scholar 

  28. Gerlinger, M., et al. (2012). Genome-wide RNA interference analysis of renal carcinoma survival regulators identifies MCT4 as a Warburg effect metabolic target. The Journal of Pathology, 227(2), 146–156.

    Article  CAS  PubMed  Google Scholar 

  29. Martinez-Outschoorn, U. E., et al. (2010). Autophagy in cancer associated fibroblasts promotes tumor cell survival: Role of hypoxia, HIF1 induction and NFkappaB activation in the tumor stromal microenvironment. Cell Cycle, 9(17), 3515–3533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lohr, M., et al. (2001). Transforming growth factor-beta1 induces desmoplasia in an experimental model of human pancreatic carcinoma. Cancer Research, 61(2), 550–555.

    PubMed  CAS  Google Scholar 

  31. Guido, C., et al. (2012). Metabolic reprogramming of cancer-associated fibroblasts by TGF-beta drives tumor growth: Connecting TGF-beta signaling with “Warburg-like” cancer metabolism and L-lactate production. Cell Cycle, 11(16), 3019–3035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pan, Y., et al. (2007). Multiple factors affecting cellular redox status and energy metabolism modulate hypoxia-inducible factor prolyl hydroxylase activity in vivo and in vitro. Molecular and Cellular Biology, 27(3), 912–925.

    Article  CAS  PubMed  Google Scholar 

  33. Chandel, N. S., et al. (2000). Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: A mechanism of O2 sensing. The Journal of Biological Chemistry, 275(33), 25130–25138.

    Article  CAS  PubMed  Google Scholar 

  34. Salceda, S., & Caro, J. (1997). Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin-proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. The Journal of Biological Chemistry, 272(36), 22642–22647.

    Article  CAS  PubMed  Google Scholar 

  35. Zhang, H., et al. (2008). Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. The Journal of Biological Chemistry, 283(16), 10892–10903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bellot, G., et al. (2009). Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Molecular and Cellular Biology, 29(10), 2570–2581.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Klimova, T., & Chandel, N. S. (2008). Mitochondrial complex III regulates hypoxic activation of HIF. Cell Death and Differentiation, 15(4), 660–666.

    Article  CAS  PubMed  Google Scholar 

  38. Capparelli, C., et al. (2012). Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis via glycolysis and ketone production. Cell Cycle, 11(12), 2285–2302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mercurio, F., et al. (1997). IKK-1 and IKK-2: Cytokine-activated IkappaB kinases essential for NF-kappaB activation. Science, 278(5339), 860–866.

    Article  CAS  PubMed  Google Scholar 

  40. Cummins, E. P., et al. (2006). Prolyl hydroxylase-1 negatively regulates IkappaB kinase-beta, giving insight into hypoxia-induced NFkappaB activity. Proceedings of the National Academy of Sciences of the United States of America, 103(48), 18154–18159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Martinez-Outschoorn, U. E., et al. (2011). Cytokine production and inflammation drive autophagy in the tumor microenvironment: Role of stromal caveolin-1 as a key regulator. Cell Cycle, 10(11), 1784–1793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wu, S., & Sun, J. (2011). Vitamin D, vitamin D receptor, and macroautophagy in inflammation and infection. Discovery Medicine, 11(59), 325–335.

    PubMed  PubMed Central  Google Scholar 

  43. Bonello, S., et al. (2007). Reactive oxygen species activate the HIF-1alpha promoter via a functional NFkappaB site. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(4), 755–761.

    Article  CAS  PubMed  Google Scholar 

  44. Garcia-Cardena, G., et al. (1997). Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. The Journal of Biological Chemistry, 272(41), 25437–25440.

    Article  CAS  PubMed  Google Scholar 

  45. Martinez-Outschoorn, U. E., et al. (2011). Energy transfer in “parasitic” cancer metabolism: Mitochondria are the powerhouse and Achilles’ heel of tumor cells. Cell Cycle, 10(24), 4208–4216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sotgia, F., et al. (2012). Caveolin-1 and cancer metabolism in the tumor microenvironment: Markers, models, and mechanisms. Annual Review of Pathology, 7, 423–467.

    Article  CAS  PubMed  Google Scholar 

  47. Martinez-Outschoorn, U. E., Sotgia, F., & Lisanti, M. P. (2012). Power surge: Supporting cells “fuel” cancer cell mitochondria. Cell Metabolism, 15(1), 4–5.

    Article  CAS  PubMed  Google Scholar 

  48. Zhao, H., et al. (2016). Tumor microenvironment derived exosomes pleiotropically modulate cancer cell metabolism. eLife, 5, e10250.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Dang, C. V. (2010). Glutaminolysis: Supplying carbon or nitrogen or both for cancer cells? Cell Cycle, 9(19), 3884–3886.

    Article  CAS  PubMed  Google Scholar 

  50. Daye, D., & Wellen, K. E. (2012). Metabolic reprogramming in cancer: Unraveling the role of glutamine in tumorigenesis. Seminars in Cell & Developmental Biology, 23(4), 362–369.

    Article  CAS  Google Scholar 

  51. Metallo, C. M., et al. (2011). Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature, 481(7381), 380–384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kamphorst, J. J., et al. (2014). Quantitative analysis of acetyl-CoA production in hypoxic cancer cells reveals substantial contribution from acetate. Cancer & Metabolism, 2, 23.

    Article  Google Scholar 

  53. Kumar-Sinha, C., et al. (2003). Transcriptome analysis of HER2 reveals a molecular connection to fatty acid synthesis. Cancer Research, 63(1), 132–139.

    PubMed  CAS  Google Scholar 

  54. Pavlides, S., et al. (2010). The autophagic tumor stroma model of cancer: Role of oxidative stress and ketone production in fueling tumor cell metabolism. Cell Cycle, 9(17), 3485–3505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Marino, G., & Kroemer, G. (2010). Ammonia: A diffusible factor released by proliferating cells that induces autophagy. Science Signaling, 3(124), pe19.

    Article  CAS  PubMed  Google Scholar 

  56. Eng, C. H., & Abraham, R. T. (2010). Glutaminolysis yields a metabolic by-product that stimulates autophagy. Autophagy, 6(7), 968–970.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Sousa, C. M., et al. (2016). Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature, 536(7617), 479–483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Le .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Sazeides, C., Le, A. (2018). Metabolic Relationship between Cancer-Associated Fibroblasts and Cancer Cells. In: Le, A. (eds) The Heterogeneity of Cancer Metabolism. Advances in Experimental Medicine and Biology, vol 1063. Springer, Cham. https://doi.org/10.1007/978-3-319-77736-8_11

Download citation

Publish with us

Policies and ethics