Skip to main content

Carbohydrate Modifiers for Tissue Engineering Scaffolds

  • Chapter
  • First Online:
Carbohydrate-Based Interactions at the Molecular and the Cellular Level

Part of the book series: Springer Theses ((Springer Theses))

  • 371 Accesses

Abstract

Three monosaccharides, Glc (23), Gal (24), and GlcNAc (25, Fig. 1.2) were selected as initial targets for the synthesis of carbohydrate modifiers for the hSAF scaffold. These were chosen due to their prevalence in biology as some of the major components of natural oligosaccharides (Werz et al., ACS Chem Biol 2:685–691, 2007, [1]), meaning that they are most likely to be tolerated by cells and elicit a biological response. Their ubiquity also means that they are readily available and accessible syntheses of many derivatives have been developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Abbreviations and Acronyms for full explanation of this notation.

  2. 2.

    See Sect. 5.6.1 for details of the synthesis of the linker used.

References

  1. Werz DB, Ranzinger R, Herget S, Adibekian A, von der Lieth C-W, Seeberger PH (2007) ACS Chem Biol 2:685–691

    Article  CAS  PubMed  Google Scholar 

  2. Cho CS, Seo SJ, Park IK, Kim SH, Kim TH, Hoshiba T, Harada I, Akaike T (2006) Biomaterials 27:576–585

    Article  CAS  PubMed  Google Scholar 

  3. Boggs JM, Gao W, Zhao J, Park H-J, Liu Y, Basu A (2010) FEBS Lett 584:1771–1778

    Article  CAS  PubMed  Google Scholar 

  4. Kornfeld R, Kornfeld S (1985) Annu Rev Biochem 54:631–664

    Article  CAS  PubMed  Google Scholar 

  5. Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds) (2009) Essentials of glycobiology, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor (NY)

    Google Scholar 

  6. Toole BP (2004) Nat Rev Cancer 4:528–539

    Article  CAS  PubMed  Google Scholar 

  7. Mereyala HB, Gurrala SR (1998) Carbohydr Res 307:351–354

    Article  CAS  Google Scholar 

  8. Vauzeilles B, Dausse B, Palmier S, Beau J-M (2001) Tetrahedron Lett 42:7567–7570

    Article  CAS  Google Scholar 

  9. van Kasteren SI, Kramer HB, Jensen HH, Campbell SJ, Kirkpatrick J, Oldham NJ, Anthony DC, Davis BG (2007) Nature 446:1105–1109

    Article  CAS  PubMed  Google Scholar 

  10. Zhao J, Liu Y, Park H-J, Boggs J M, Basu A, Program F (2012) Bioconjug Chem 1–64

    Google Scholar 

  11. Guo J, Ye X-S (2010) Molecules 15:7235–7265

    Article  CAS  PubMed  Google Scholar 

  12. Izumi M, Fukase K, Kusumoto S (2002) Biosci Biotechnol Biochem 66:211–214

    Article  CAS  PubMed  Google Scholar 

  13. Merkel L, Beckmann HSG, Wittmann V, Budisa N (2008) ChemBioChem 9:1220–1224

    Article  CAS  PubMed  Google Scholar 

  14. Mosmann T (1983) J Immunol Methods 65:55–63

    Article  CAS  Google Scholar 

  15. Russo L, Gloria A, Russo T, D’Amora U, Taraballi F, De Santis R, Ambrosio L, Nicotra F, Cipolla L (2013) RSC Adv 3:6286–6289

    Article  CAS  Google Scholar 

  16. Mehrban N, Abelardo ES, Wasmuth A, Hudson KL, Mullen LM, Thomson AR, Birchall MA, Woolfson DN (2014) Adv Healthc Mater 3:1387–1391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Mehrban N, Zhu B, Tamagnini F, Young FI, Wasmuth A, Hudson KL, Thomson AR, Birchall MA, Randall AD, Song B, Woolfson DN (2015) ACS Biomater Sci Eng 1:431–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mahmoud ZN, Gunnoo SB, Thomson AR, Fletcher JM, Woolfson DN (2011) Biomaterials 32:3712–3720

    Article  CAS  PubMed  Google Scholar 

  19. Kantlehner M, Schaffner P, Finsinger D, Meyer J, Jonczyk A, Diefenbach B, Nies B, Hölzemann G, Goodman SL, Kessler H (2000) ChemBioChem 1:107–114

    Article  CAS  PubMed  Google Scholar 

  20. Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Adv Mater 21:3307–3329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Niidome T, Yamagata M, Okamoto Y, Akiyama Y, Takahashi H, Kawano T, Katayama Y, Niidome Y (2006) J Control Release 114:343–347

    Article  CAS  PubMed  Google Scholar 

  22. Kislukhin AA, Higginson CJ, Hong VP, Finn MG (2012) J Am Chem Soc 134:6491–6497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nakabayashi S, Warren CD, Jeanloz RW (1986) Carbohydr Res 150:C7–C10

    Article  CAS  PubMed  Google Scholar 

  24. Wittmann V, Lennartz D (2002) Eur J Org Chem 1363–1367

    Google Scholar 

  25. Mackenzie LF, Wang Q, Warren RAJ, Withers SG (1998) J Am Chem Soc 7863:5583–5584

    Article  Google Scholar 

  26. Kim Y-W, Lee SS, Warren RAJ, Withers SG (2004) J Biol Chem 279:42787–42793

    Article  CAS  PubMed  Google Scholar 

  27. Fukuda T, Onogi S, Miura Y (2009) Thin Solid Films 518:880–888

    Article  CAS  Google Scholar 

  28. Goebel WF, Avery OT (1929) J Exp Med 50:521–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Williams SJ, Withers SG (2000) Carbohydr Res 327:27–46

    Article  CAS  PubMed  Google Scholar 

  30. Persson K, Ly HD, Dieckelmann M, Wakarchuk WW, Withers SG, Strynadka NC (2001) Nat Struct Biol 8:166–175

    Article  CAS  PubMed  Google Scholar 

  31. Unverzagt C, Kunz H, Paulson J (1990) J Am Chem Soc 01:9308–9309

    Article  Google Scholar 

  32. Phillips ML, Nudelman E, Gaeta FC, Perez M, Singhal AK, Hakomori S-I, Paulson JC (1990) Science 250:1130–1132

    Article  CAS  PubMed  Google Scholar 

  33. Yu H, Chokhawala H, Karpel R, Yu H, Wu B, Zhang J, Zhang Y, Jia Q, Chen X (2005) J Am Chem Soc 127:17618–17619

    Article  CAS  PubMed  Google Scholar 

  34. Sugiarto G, Lau K, Qu J, Li Y, Lim S, Mu S, Ames JB, Fishe AJ, Chen X (2012) ACS Chem Biol 7:1232–1240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rich JR, Cunningham A-M, Gilbert M, Withers SG (2011) Chem Commun (Cambridge, U.K) 47:10806–10808

    Google Scholar 

  36. Dumas DP, Ichikawa Y, Wong C-H, Lowe JB, Nair RP (1991) Bioorg Med Chem Lett 1:425–428

    Article  CAS  Google Scholar 

  37. Lin S-W, Yuan T-M, Li J-R, Lin C-H (2006) Biochemistry 45:8108–8116

    Article  CAS  PubMed  Google Scholar 

  38. Hennen E, Faissner A (2012) Int J Biochem Cell Biol 44:830–833

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kieran L. Hudson .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hudson, K.L. (2018). Carbohydrate Modifiers for Tissue Engineering Scaffolds. In: Carbohydrate-Based Interactions at the Molecular and the Cellular Level. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-77706-1_5

Download citation

Publish with us

Policies and ethics