Skip to main content

Effects of Strong Static Fields on the Dielectric Relaxation of Supercooled Liquids

  • Chapter
  • First Online:
Nonlinear Dielectric Spectroscopy

Part of the book series: Advances in Dielectrics ((ADVDIELECT))

Abstract

When large DC-bias fields are applied to polar dielectric liquids, the orientational polarization of dipoles will lead to a considerable macroscopic dipole moment of the sample. In this situation, the dielectric relaxation behavior probed by a small amplitude AC-field superimposed onto the large DC-field will differ from the zero-bias field limit. This chapter summarizes the experimental approaches to dielectric spectroscopy in the presence of a large amplitude static field and the findings from such experiments. Only nonlinear effects that are completely reversible will be addressed, focusing on glass forming materials, as systems near their glass transition turn out to be particularly sensitive to external fields. The relation to third harmonic responses obtained from AC-fields is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Fröhlich, Theory of Dielectrics (Clarendon, Oxford, 1958)

    Google Scholar 

  2. J. Herweg, Die elektrischen dipole in flüssigen Dielektricis. Z Physik 3, 36 (1920)

    Article  CAS  Google Scholar 

  3. F. Kremer, A. Schönhals (eds.), Broadband Dielectric Spectroscopy (Springer, Berlin, 2002)

    Google Scholar 

  4. R. Richert, Supercooled liquids and glasses by dielectric relaxation spectroscopy. Adv. Chem. Phys. 156, 101 (2014)

    Google Scholar 

  5. I.M. Hodge, Enthalpy relaxation and recovery in amorphous materials. J. Non-Cryst. Solids 169, 211 (1994)

    Article  CAS  Google Scholar 

  6. J. Brandrup, E.H. Immergut (eds.), Polymer Handbook, 2nd edn. (Wiley, New York, 1975)

    Google Scholar 

  7. D.G. Lahoz, G. Walker, An experimental analysis of electromagnetic forces in liquids. J. Phys. D Appl. Phys. 8, 1994 (1975)

    Article  Google Scholar 

  8. C.J.F. Böttcher, Theory of Electric Polarization, vol. 1 (Elsevier, Amsterdam, 1973)

    Google Scholar 

  9. S. Weinstein, R. Richert, Nonlinear features in the dielectric behavior of propylene glycol. Phys. Rev. B 75, 064302 (2007)

    Article  CAS  Google Scholar 

  10. J.A. Schellman, Dielectric saturation. J. Chem. Phys. 24, 912 (1956)

    Article  CAS  Google Scholar 

  11. G.G. Wiseman, J.K. Kuebler, Electrocaloric effect in ferroelectric Rochelle salt. Phys. Rev. 131, 2023 (1963)

    Article  CAS  Google Scholar 

  12. A.R. Young-Gonzales, S. Samanta, R. Richert, Dynamics of glass-forming liquids. XIX. Rise and decay of field induced anisotropy in the non-linear regime. J. Chem. Phys. 143, 104504 (2015)

    Article  CAS  PubMed  Google Scholar 

  13. L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1984)

    Google Scholar 

  14. P. Ben Ishai, M.S. Talary, A. Caduff, E. Levy, Y. Feldman, Electrode polarization in dielectric measurements: a review. Meas. Sci. Technol. 24, 102001 (2013)

    Article  CAS  Google Scholar 

  15. P.A. Bradley, G. Parry Jones, A system for the investigation of nonlinear dielectric effects using digital techniques. J. Phys. E: Sci. Instrum. 7, 449 (1974)

    Article  CAS  Google Scholar 

  16. A.E. Davies, M.J. van der Sluijs, G. Parry Jones, Notes on a system for the investigation of nonlinear dielectric effects. J. Phys. E: Sci. Instrum. 11, 737 (1978)

    Article  Google Scholar 

  17. M. Górny, J. Zioło, S.J. Rzoska, A new application of the nonlinear dielectric method for studying relaxation processes in liquids. Rev. Sci. Instrum. 67, 4290 (1996)

    Article  Google Scholar 

  18. S.J. Rzoska, V.P. Zhelezny (eds.), Nonlinear Dielectric Phenomena in Complex Liquids (Kluwer Academic Publishers, Dordrecht, 2004)

    Google Scholar 

  19. S.J. Rzoska, A. Drozd-Rzoska, Dual field nonlinear dielectric spectroscopy in a glass forming EPON 828 epoxy resin. J. Phys.: Condens. Matter 24, 035101 (2012)

    Google Scholar 

  20. D. L′Hôte, R. Tourbot, F. Ladieu, P. Gadige, Control parameter for the glass transition of glycerol evidenced by the static-field-induced nonlinear response. Phys. Rev. B 90, 104202 (2014)

    Article  CAS  Google Scholar 

  21. S. Samanta, R. Richert, Dynamics of glass-forming liquids. XVIII. Does entropy control structural relaxation times? J. Chem. Phys. 142, 044504 (2015)

    Article  CAS  PubMed  Google Scholar 

  22. S. Samanta, R. Richert, Non-linear dielectric behavior of a secondary relaxation: glassy d-sorbitol. J. Phys. Chem. B 119, 8909 (2015)

    Article  CAS  PubMed  Google Scholar 

  23. P. Langevin, Sur la théorie du magnétisme. J. Phys. Theor. Appl. 4, 678 (1905)

    Article  Google Scholar 

  24. P. Debye, Der Rotationszustand von Molekülen in Flüssigkeiten. Phys. Z. 36, 100 (1935)

    CAS  Google Scholar 

  25. P. Debye, Polar Molecules (Chemical Catalog Company, New York, 1929)

    Google Scholar 

  26. R. Richert, Frequency dependence of dielectric saturation. Phys. Rev. E 88, 062313 (2013)

    Article  CAS  Google Scholar 

  27. G.P. Jones, in Non-Linear Dielectric Effects: Dielectric and Related Molecular Processes, specialist periodical reports vol. 2, ed. by M. Davies (The Chemical Society, London, 1975)

    Google Scholar 

  28. A. Piekara, B. Piekara, Saturation électrique dans les liquides purs et leurs mélanges. Compt. Rend. Acad. Sci. (Paris) 203, 852 (1936)

    CAS  Google Scholar 

  29. A. Piekara, Dielectric saturation and hydrogen bonding. J. Chem. Phys. 36, 2145 (1962)

    Article  CAS  Google Scholar 

  30. J. Małecki, Dielectric saturation in aliphatic alcohols. J. Chem. Phys. 36, 2144 (1962)

    Article  Google Scholar 

  31. A. Piekara, A. Chelkowski, New experiments on dielectric saturation in polar liquids. J. Chem. Phys. 25, 794 (1956)

    Article  CAS  Google Scholar 

  32. I. Danielewicz-Ferchmin, On the non-linear dielectric effect in some non-polar liquids and nitrobenzene. Chem. Phys. Lett. 155, 539 (1989)

    Article  CAS  Google Scholar 

  33. J.H. van Vleck, On the role of dipole-dipole coupling in dielectric media. J. Chem. Phys. 5, 556 (1937)

    Article  Google Scholar 

  34. S. Kielich, Semi-macroscopic treatment of the theory of non-linear phenomena in dielectric liquids submitted to strong electric and magnetic fields. Acta Phys. Polon. 17, 239 (1958)

    Google Scholar 

  35. R.L. Fulton, The theory of nonlinear dielectric. Polar, polarizable molecules. J. Chem. Phys. 78, 6877 (1983)

    Article  CAS  Google Scholar 

  36. R.L. Fulton, On the theory of nonlinear dielectrics. J. Chem. Phys. 78, 6865 (1983)

    Article  CAS  Google Scholar 

  37. J.L. Déjardin, Y.P. Kalmykov, P.M. Déjardin, Birefringence and dielectric relaxation in strong electric fields. Adv. Chem. Phys. 117, 275 (2001)

    Google Scholar 

  38. I. Szalai, S. Nagy, S. Dietrich, Nonlinear dielectric effect of dipolar fluids. J. Chem. Phys. 131, 154905 (2009)

    Article  CAS  PubMed  Google Scholar 

  39. S. Buyukdagli, Dielectric anisotropy in polar solvents under external fields. J. Stat. Mech. 2015, P08022 (2015)

    Article  CAS  Google Scholar 

  40. D.V. Matyushov, Nonlinear dielectric response of polar liquids. J. Chem. Phys. 142, 244502 (2015)

    Article  CAS  PubMed  Google Scholar 

  41. J. Małecki, The relaxation of the nonlinear dielectric effect. J. Mol. Struct. 436–437, 595 (1997)

    Google Scholar 

  42. J. Małecki, Non-linear dielectric behaviour and chemical equilibria in liquids. Electrochim. Acta 33, 1235 (1988)

    Article  Google Scholar 

  43. J. Małecki, Investigations of hexanol-1 multimers and complexes by the method of dielectric polarization in weak and strong electric fields. J. Chem. Phys. 43, 1351 (1965)

    Article  Google Scholar 

  44. J.A. Małecki, Study of self-association of 2-methyl-2-butanol based on non-linear dielectric effect. Chem. Phys. Lett. 297, 29 (1998)

    Article  Google Scholar 

  45. L.P. Singh, R. Richert, Watching hydrogen bonded structures in an alcohol convert from rings to chains. Phys. Rev. Lett. 109, 167802 (2012)

    Article  CAS  PubMed  Google Scholar 

  46. L.P. Singh, C. Alba-Simionesco, R. Richert, Dynamics of glass-forming liquids. XVII. Dielectric relaxation and intermolecular association in a series of isomeric octyl alcohols. J. Chem. Phys. 139, 144503 (2013)

    Article  CAS  PubMed  Google Scholar 

  47. W. Dannhauser, Dielectric study of intermolecular association in isomeric octyl alcohols. J. Chem. Phys. 48, 1911 (1968)

    Article  CAS  Google Scholar 

  48. R. Böhmer, C. Gainaru, R. Richert, Structure and dynamics of monohydroxy alcohols—milestones towards their microscopic understanding, 100 years after Debye. Phys. Rep. 545, 125 (2014)

    Article  CAS  Google Scholar 

  49. A.R. Young-Gonzales, R. Richert, Field induced changes in the ring/chain equilibrium of hydrogen bonded structures: 5-methyl-3-heptanol. J. Chem. Phys. 145, 074503 (2016)

    Article  CAS  PubMed  Google Scholar 

  50. W.M. Winslow, Induced fibration of suspensions. J. Appl. Phys. 20, 1137 (1949)

    Article  CAS  Google Scholar 

  51. C.T. Moynihan, A.V. Lesikar, Comparison and analysis of relaxation processes at the glass transition temperature. Ann. New York Acad. Sci. 371, 151 (1981)

    Article  CAS  Google Scholar 

  52. G.P. Johari, Effects of electric field on the entropy, viscosity, relaxation time, and glass-formation. J. Chem. Phys. 138, 154503 (2013)

    Article  CAS  PubMed  Google Scholar 

  53. G. Adam, J.H. Gibbs, On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139 (1965)

    Article  CAS  Google Scholar 

  54. W. Kauzmann, The nature of the glassy state and the behavior of liquids at low temperatures. Chem. Rev. 43, 219 (1948)

    Article  CAS  Google Scholar 

  55. D.V. Matyushov, Configurational entropy of polar glass formers and the effect of electric field on glass transition. J. Chem. Phys. 145, 034504 (2016)

    Article  CAS  PubMed  Google Scholar 

  56. S. Samanta, R. Richert, Electrorheological source of nonlinear dielectric effects in molecular glass-forming liquids. J. Phys. Chem. B 120, 7737 (2016)

    Article  CAS  PubMed  Google Scholar 

  57. A.R. Young-Gonzales, K. Adrjanowicz, M. Paluch, R. Richert, Nonlinear dielectric features of highly polar glass formers: derivatives of propylene carbonate. J. Chem. Phys. 147, 224501 (2017)

    Article  CAS  PubMed  Google Scholar 

  58. S. Samanta, O. Yamamuro, R. Richert, Connecting thermodynamics and dynamics in a supercooled liquid: cresolphthalein-dimethylether. Thermochim. Acta 636, 57 (2016)

    Article  CAS  Google Scholar 

  59. M. Goldstein, Comparing landscape calculations with calorimetric data on ortho-terphenyl, and the question of the configurational fraction of the excess entropy. J. Chem. Phys. 123, 244511 (2005)

    Article  CAS  PubMed  Google Scholar 

  60. L.-M. Wang, R. Richert, Measuring the configurational heat capacity of liquids. Phys. Rev. Lett. 99, 185701 (2007)

    Article  CAS  PubMed  Google Scholar 

  61. R. Richert, Relaxation time and excess entropy in viscous liquids: electric field versus temperature as control parameter. J. Chem. Phys. 146, 064501 (2017)

    Article  CAS  PubMed  Google Scholar 

  62. R. Richert, Nonlinear dielectric effects in liquids: a guided tour. J. Phys.: Condens. Matter 29, 363001 (2017)

    Google Scholar 

  63. P. Lunkenheimer, R. Wehn, U. Schneider, A. Loidl, Glassy aging dynamics. Phys. Rev. Lett. 95, 055702 (2005)

    Article  CAS  PubMed  Google Scholar 

  64. R. Richert, P. Lunkenheimer, S. Kastner, A. Loidl, On the derivation of equilibrium relaxation times from aging experiments. J. Phys. Chem. B 117, 12689 (2013)

    Article  CAS  PubMed  Google Scholar 

  65. A.J. Kovacs, J.J. Aklonis, J.M. Hutchinson, A.R. Ramos, Isobaric volume and enthalpy recovery of glasses. II. A transparent multiparameter theory. J. Polym. Sci. B: Polym Phys. 34, 2467 (1996)

    Article  CAS  Google Scholar 

  66. R. Richert, Physical aging and heterogeneous dynamics. Phys. Rev. Lett. 104, 085702 (2010)

    Article  CAS  PubMed  Google Scholar 

  67. S. Samanta, R. Richert, Limitations of heterogeneous models of liquid dynamics: very slow rate exchange in the excess wing. J. Chem. Phys. 140, 054503 (2014)

    Article  CAS  PubMed  Google Scholar 

  68. M.D. Ediger, Spatially heterogeneous dynamics in supercooled liquids. Annu. Rev. Phys. Chem. 51, 99 (2000)

    Article  CAS  PubMed  Google Scholar 

  69. R. Richert, Heterogeneous dynamics in liquids: fluctuations in space and time. J. Phys.: Condens. Matter 14, R703 (2002)

    CAS  Google Scholar 

  70. W. Huang, R. Richert, Dynamics of glass-forming liquids. XIII. Microwave heating in slow motion. J. Chem. Phys. 130, 194509 (2009)

    Article  CAS  PubMed  Google Scholar 

  71. R. Richert, Reverse calorimetry of a supercooled liquid: propylene carbonate. Thermochim. Acta 522, 28 (2011)

    Article  CAS  Google Scholar 

  72. R. Coelho, D. Khac Manh, Utilisation de la biréfringence électro-optique pour l′étude de la relaxation dipolaire dans les liquides polaires faiblement conducteurs. C R Acad. Sc Paris—Serie C 264, 641 (1967)

    CAS  Google Scholar 

  73. M.S. Beevers, J. Crossley, D.C. Garrington, G. Williams, Dielectric and dynamic Kerr-effect studies in liquid systems. Faraday Symp. Chem. Soc. 11, 38 (1977)

    Article  CAS  Google Scholar 

  74. M.S. Beevers, D.A. Elliott, G. Williams, Static and dynamic Kerr-effect studies of glycerol in its highly viscous state. J. Chem. Soc. Faraday Trans. 2(76), 112 (1980)

    Article  Google Scholar 

  75. J. Crossley, G. Williams, Structural relaxation in 2-methyl-2,4-pentanediol studied by dielectric and Kerr-effect techniques. J. Chem. Soc. Faraday Trans. 2(73), 1651 (1977)

    Article  Google Scholar 

  76. J. Crossley, G. Williams, Relaxation in hydrogen-bonded liquids studied by dielectric and Kerr-effect techniques. J. Chem. Soc., Faraday Trans. 2 73, 1906 (1977)

    Article  CAS  Google Scholar 

  77. W.T. Coffey, B.V. Paranjape, Dielectric and Kerr effect relaxation in alternating electric fields. Proc. R. Ir. Acad. 78, 17 (1978)

    Google Scholar 

  78. J.L. Déjardin, P.M. Déjardin, Y.P. Kalmykov, Nonlinear electro-optical response. I. Steady state Kerr effect relaxation arising from a weak ac electric field superimposed on a strong dc bias field. J. Chem. Phys. 106, 5824 (1997)

    Article  Google Scholar 

  79. W.T. Coffey, Y.P. Kalmykov, S.V. Titov, Anomalous nonlinear dielectric and Kerr effect relaxation steady state responses in superimposed ac and dc electric fields. J. Chem. Phys. 126, 084502 (2007)

    Article  CAS  PubMed  Google Scholar 

  80. M.S. Beevers, J. Crossley, D.C. Garrington, G. Williams, Consideration of dielectric relaxation and the Kerr-effect relaxation in relation to the reorientational motions of molecules. J. Chem. Soc. Faraday Trans. 2 72, 1482 (1976)

    Article  CAS  Google Scholar 

  81. C. Thibierge, D. L’Hôte, F. Ladieu, R. Tourbot, A method for measuring the nonlinear response in dielectric spectroscopy through third harmonics detection. Rev. Sci. Instrum. 79, 103905 (2008)

    Article  CAS  PubMed  Google Scholar 

  82. J.-P. Bouchaud, G. Biroli, Nonlinear susceptibility in glassy systems: a probe for cooperative dynamical length scales. Phys. Rev. B 72, 064204 (2005)

    Article  CAS  Google Scholar 

  83. M. Tarzia, G. Biroli, A. Lefèvre, J.-P. Bouchaud, Anomalous nonlinear response of glassy liquids: general arguments and a mode-coupling approach. J. Chem. Phys. 132, 054501 (2010)

    Article  CAS  PubMed  Google Scholar 

  84. F. Ladieu, C. Brun, D. L’Hôte, Nonlinear dielectric susceptibilities in supercooled liquids: a toy model. Phys. Rev. B 85, 184207 (2012)

    Article  CAS  Google Scholar 

  85. C. Crauste-Thibierge, C. Brun, F. Ladieu, D. L’Hôte, G. Biroli, J.-P. Bouchaud, Evidence of growing spatial correlations at the glass transition from nonlinear response experiments. Phys. Rev. Lett. 104, 165703 (2010)

    Article  CAS  PubMed  Google Scholar 

  86. C. Brun, F. Ladieu, D. L’Hôte, M. Tarzia, G. Biroli, J.-P. Bouchaud, Nonlinear dielectric susceptibilities: accurate determination of the growing correlation volume in a supercooled liquid. Phys. Rev. B 84, 104204 (2011)

    Article  CAS  Google Scholar 

  87. C. Crauste-Thibierge, C. Brun, F. Ladieu, D. L’Hôte, G. Biroli, J.-P. Bouchaud, Nonlinear susceptibility measurements in a supercooled liquid close to Tg: growth of the correlation length and possible critical behavior. J. Non-Cryst. Solids 357, 279 (2011)

    Article  CAS  Google Scholar 

  88. T. Bauer, P. Lunkenheimer, A. Loidl, Cooperativity and the freezing of molecular motion at the glass transition. Phys. Rev. Lett. 111, 225702 (2013)

    Article  CAS  PubMed  Google Scholar 

  89. R. Casalini, D. Fragiadakis, C.M. Roland, Dynamic correlation length scales under isochronal conditions. J. Chem. Phys. 142, 064504 (2015)

    Article  CAS  PubMed  Google Scholar 

  90. S. Albert, T. Bauer, M. Michl, G. Biroli, J.-P. Bouchaud, A. Loidl, P. Lunkenheimer, R. Tourbot, C. Wiertel-Gasquet, F. Ladieu, Fifth-order susceptibility unveils growth of thermodynamic amorphous order in glass-formers. Science 352, 1308 (2016)

    Article  CAS  PubMed  Google Scholar 

  91. R. Richert, Nonlinear dielectric signatures of entropy changes in liquids subject to time-dependent electric fields. J. Chem. Phys. 144, 114501 (2016)

    Article  CAS  PubMed  Google Scholar 

  92. B. Schiener, R. Böhmer, A. Loidl, R.V. Chamberlin, Nonresonant spectral hole burning in the slow dielectric response of supercooled liquids. Science 274, 752 (1996)

    Article  CAS  Google Scholar 

  93. R. Richert, S. Weinstein, Nonlinear dielectric response and thermodynamic heterogeneity in liquids. Phys. Rev. Lett. 97, 095703 (2006)

    Article  CAS  PubMed  Google Scholar 

  94. W. Huang, R. Richert, The physics of heating by time-dependent fields: microwaves and water revisited. J. Phys. Chem. B 112, 9909 (2008)

    Article  CAS  PubMed  Google Scholar 

  95. T. Bauer, P. Lunkenheimer, S. Kastner, A. Loidl, Nonlinear dielectric response at the excess wing of glass-forming liquids. Phys. Rev. Lett. 110, 107603 (2013)

    Article  CAS  PubMed  Google Scholar 

  96. K.R. Jeffrey, R. Richert, K. Duvvuri, Dielectric hole burning: signature of dielectric and thermal relaxation time heterogeneity. J. Chem. Phys. 119, 6150 (2003)

    Article  CAS  Google Scholar 

  97. P. Kim, A.R. Young-Gonzales, R. Richert, Dynamics of glass-forming liquids. XX. Third harmonic experiments of non-linear dielectric effects versus a phenomenological model. J. Chem. Phys. 145, 064510 (2016)

    Article  CAS  Google Scholar 

  98. G. Diezemann, Nonlinear response theory for Markov processes: simple models for glassy relaxation. Phys. Rev. E 85, 051502 (2012)

    Article  CAS  Google Scholar 

  99. G. Diezemann, Higher-order correlation functions and nonlinear response functions in a Gaussian trap model. J. Chem. Phys. 138, 12A505 (2013)

    Article  CAS  PubMed  Google Scholar 

  100. G. Diezemann, Nonlinear response functions in an exponential trap model. J. Non-Cryst. Solids 407, 61 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is partly supported by the National Science Foundation under Grant No. CHE-1564663.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranko Richert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Richert, R. (2018). Effects of Strong Static Fields on the Dielectric Relaxation of Supercooled Liquids. In: Richert, R. (eds) Nonlinear Dielectric Spectroscopy. Advances in Dielectrics. Springer, Cham. https://doi.org/10.1007/978-3-319-77574-6_4

Download citation

Publish with us

Policies and ethics