Skip to main content

Applications of the “Classical” Metamaterial Model—Optical Activity and Electromagnetically Induced Transparency

  • Chapter
  • First Online:
Optical Metamaterials: Qualitative Models

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 211))

  • 765 Accesses

Abstract

In the initial stage of research on MMs emphasis was put on exploring materials that potentially lead to a biaxial anisotropic (linear dichroism) effective material response [1,2,3,4,5,6]. Recently research was also extended toward the exploration of meta-atoms that affect off-diagonal elements of the effective material tensors (elliptical dichroism). It expands the number of observable optical phenomena, leading to, e.g., optical activity [7,8,9,10,11] bidirectional and asymmetric transmission [12,13,14] or chirality-induced negative refraction [15,16,17]. In general, investigating the geometry of the MM (the meta-atoms geometry and their arrangement) allows us to determine the form of the effective material tensors in the quasistatic limit as extensively discussed in [8]. From such considerations it is possible to conclude on the symmetry of the plasmonic eigenmodes sustained by the MAs and on the polarization of the eigenmodes allowed to propagate in the effective medium [12]. But in order to determine the actual frequency dependence of the tensor elements, more extended models are needed which start in their description of the MA properties from scratch [14].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The period in x and y direction is 0.4 µm, the SRR arm length 0.2 µm, the base width 0.08 µm, the arm width 0.04 µm, and the metal film thickness 0.025 µm. Gold material parameters were taken from literature [29]. As a substrate index we used nsub = 1.5 and for the ambient material namb = 1.

References

  1. U.K. Chettiar, A.V. Kildishev, H.-K. Yuan, W. Cai, S. Xiao, V.P. Drachev, V.M. Shalaev, Opt. Lett. 32, 1671 (2007)

    Article  Google Scholar 

  2. G. Dolling, M. Wegener, C. Soukoulis, Opt. Lett. 32, 53 (2007)

    Article  CAS  Google Scholar 

  3. J. Valentine, S. Zhang, T. Zentgraf, G. Ulin-Avila, D. Genov, X. Zhang, Nature 455, 376 (2008)

    Article  CAS  Google Scholar 

  4. C. Helgert, C. Menzel, C. Rockstuhl, E. Pshenay-Severin, E.B. Kley, A. Chipouline, A. Tunnermann, F. Lederer, T. Pertsch, Opt. Lett. 34, 704 (2009)

    Article  CAS  Google Scholar 

  5. C. Garcia-Meca, R. Ortuno, F.J. Rodriguez-Fortuno, J. Marti, A. Martinez, Opt. Lett. 34, 1603 (2009)

    Article  CAS  Google Scholar 

  6. M. Rill, C. Kriegler, M. Thiel, G. von Freymann, S. Linden, M. Wegener, Opt. Lett. 34, 19 (2009)

    Article  CAS  Google Scholar 

  7. B. Bai, Y. Svirko, J. Turunen, T. Vallius, Phys. Rev. A 76, 023811 (2007)

    Article  Google Scholar 

  8. L. Arnaut, J. Electromagn. Waves Appl. 11, 1459 (1997)

    Article  Google Scholar 

  9. J. Reyes, A. Lakhtakia, Opt. Commun. 266, 565 (2006)

    Article  Google Scholar 

  10. S. Prosvirnin, N. Zheludev, J. Opt. A: Pure Appl. Opt. 11, 074002 (2009)

    Article  Google Scholar 

  11. S. Tretyakov, I. Nefedov, A. Shivola, S. Maslovski, C. Simovski, J. Electromagn. Waves Appl. 17, 695 (2003)

    Article  Google Scholar 

  12. V. Fedotov, P. Mladyonov, S. Prosvirnin, A.V. Rogacheva, Y. Chen, N. Zheludev, PRL 97, 167401 (2006)

    Article  CAS  Google Scholar 

  13. V. Fedotov, A. Schwanecke, N. Zheludev, V. Khardikov, S. Prosvirnin, Nano Lett. 7, 1997 (2007)

    Article  Google Scholar 

  14. S. Zhukovsky, A. Novitsky, V. Galynsky, Opt. Lett. 34, 1988 (2009)

    Article  Google Scholar 

  15. J. Pendry, Science 306, 1353 (2004)

    Article  CAS  Google Scholar 

  16. S. Tretyakov, A. Sihvola, L. Jylhä, Photonics Nanostruct. Fundam. Appl. 3, 107 (2005)

    Article  Google Scholar 

  17. J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, C. Soukoulis, Phys. Rev. B 79, 1 (2009)

    Google Scholar 

  18. J. Petschulat, C. Menzel, A. Chipouline, C. Rockstuhl, A. Tünnermann, F. Lederer, T. Pertsch, Multipole approach to metamaterials. Phys. Rev. B 78, 043811 (2008)

    Article  Google Scholar 

  19. L. Onsager, Phys. Rev. 37, 405 (1931)

    Article  CAS  Google Scholar 

  20. H. Casimir, Rev. Mod. Phys. 17, 343 (1945)

    Article  Google Scholar 

  21. S. Tretyakov, A. Sihvola, B. Jancewicz, J. Electromagn. Waves Appl. 16, 573 (2002)

    Article  Google Scholar 

  22. J. Petschulat, A. Chipouline, A. Tüunnermann, T. Pertsch, C. Menzel, C. Rockstuhl, F. Lederer, Phys. Rev. A 80, 063828 (2009)

    Article  Google Scholar 

  23. H. Raether, Surface Plasmons (Springer, New York, 1988)

    Google Scholar 

  24. C. Enkrich, M. Wegener, S. Linden, S. Burger, L. Zschiedrich, F. Schmidt, J.F. Zhou, T. Koschny, C.M. Soukoulis, PRL 95, 203901 (2005)

    Article  CAS  Google Scholar 

  25. R. Marqués, F. Medina, R. Rafii-El-Idrissi, Phys. Rev. B 65, 144440 (2002)

    Article  Google Scholar 

  26. C. Rockstuhl, T. Zentgraf, E. Pshenay-Severin, J. Petschulat, A. Chipouline, J. Kuhl, T. Pertsch, H. Giessen, F. Lederer, Opt. Express 15, 8871 (2007)

    Article  CAS  Google Scholar 

  27. R. Raab, O. De Lange, Multipole Theory in Electromagnetism (Clarendon, Oxford, 2005)

    Google Scholar 

  28. L. Li, J. Opt. Soc. Am. A 14, 2758 (1997)

    Article  Google Scholar 

  29. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)

    Article  CAS  Google Scholar 

  30. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1998)

    Google Scholar 

  31. B. Canfield, S. Kujala, M. Kauranen, K. Jemovs, T. Vallius, J. Turunen, Appl. Phys. Lett. 86, 183109 (2005)

    Article  Google Scholar 

  32. B.K. Canfield, S. Kujala, K. Jefimovs, T. Vallius, J. Turunen, M. Kauranen, J. Opt. A: Pure Appl. Opt. 7, S110 (2005)

    Article  CAS  Google Scholar 

  33. M. Decker, S. Linden, M. Wegener, Opt. Lett. 34, 1579 (2009)

    Article  Google Scholar 

  34. G. Borzdov, J. Math. Phys. 38, 6328 (1997)

    Article  Google Scholar 

  35. L. Li, J. Opt. A: Pure Appl. Opt. 5, 345 (2003)

    Article  Google Scholar 

  36. H. Chen, L. Ran, J. Huangfu, X. Zhang, K. Chen, T.M. Grzegorczyk, J.A. Kong, APL 86, 151909 (2005)

    Google Scholar 

  37. H.S. Chen, L.X. Ran, J.T. Huangfu, X.M. Zhang, K.S. Chen, T.M. Grzegorczyk, J.A. Kong, Prog. Electromagn. Res. 51, 231 (2005)

    Article  Google Scholar 

  38. E. Prodan, C. Radloff, N. Halas, P. Nordlander, Science 302, 419 (2003)

    Article  CAS  Google Scholar 

  39. K. Boller, A. Imamoglu, S. Harris, Observation of electromagnetically induced transparency. PRL 66, 2593 (1991)

    Article  CAS  Google Scholar 

  40. S.E. Harris, Electromagnetically induced transparency. Phys. Today 50, 36 (1997)

    Article  CAS  Google Scholar 

  41. M. Fleischhauer, A. Imamoglu, J. Marangos, Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633 (2005)

    Article  CAS  Google Scholar 

  42. Q. Xu et al., Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency. PRL 96, 123901 (2006)

    Article  Google Scholar 

  43. E. Waks, J. Vuckovic, Dipole induced transparency in drop-filter cavity-waveguide systems. PRL 96, 153601 (2006)

    Article  Google Scholar 

  44. M. Yanik, W. Suh, Z. Wang, S. Fan, Stopping light in a waveguide with an all-optical analog of electromagnetically induced transparency. PRL 93, 233903 (2004)

    Article  Google Scholar 

  45. N. Papasimakis, V. Fedotov, N. Zheludev, PRL 101, 253903 (2008)

    Article  CAS  Google Scholar 

  46. S. Zhang, D. Genov, Y. Wang, M. Liu, X. Zhang, Plasmon-induced transparency in metamaterials. PRL 101, 047401 (2008)

    Article  Google Scholar 

  47. N. Liu, L. Langguth, J.K.T. Weiss, M. Fleischhauer, T. Pfau, H. Giessen, Nat. Mater. 8, 758 (2009)

    Article  CAS  Google Scholar 

  48. M. Liu, T.-W. Lee, S. Gray, P. Guyot-Sionnest, M. Pelton, Excitation of dark plasmons in metal nanoparticles by a localized emitter. PRL 102, 107401 (2009)

    Article  Google Scholar 

  49. B. Luk’yanchuk, N. Zheludev, S. Maier, N. Halas, P. Nordlander, H. Giessen, C. Chong, The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010)

    Article  Google Scholar 

  50. J. Petschulat, A. Chipouline, A. Tünnermann, T. Pertsch, C. Menzel, C. Rockstuhl, T. Paul, F. Lederer, Simple and versatile analytical approach for planar metamaterials. Phys. Rev. B 82, 075102 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadi Chipouline .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chipouline, A., Küppers, F. (2018). Applications of the “Classical” Metamaterial Model—Optical Activity and Electromagnetically Induced Transparency. In: Optical Metamaterials: Qualitative Models. Springer Series in Optical Sciences, vol 211. Springer, Cham. https://doi.org/10.1007/978-3-319-77520-3_5

Download citation

Publish with us

Policies and ethics