Skip to main content

Relaxation of Inverted Quantum System Coupled with Metallic Nanoobjects

  • Chapter
  • First Online:
Optical Metamaterials: Qualitative Models

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 211))

  • 736 Accesses

Abstract

The problem of the relaxation dynamics of a two-level quantum system (QS) is considered in the frame of the developed in [1] approach and compared with the known and widely used math tools. The commonly accepted in publications approach appears to be questionable from the point of view of basic principles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Chipouline, S. Sugavanam, V.A. Fedotov, A.E. Nikolaenko, Analytical model for active metamaterials with quantum ingredients. J. Opt. 14, 114005 (2012)

    Article  Google Scholar 

  2. M. Maragkou, A.K. Nowak, E. Gallardo, H.P. van der Meulen, I. Prieto, L.J. Martinez, P.A. Postigo, J.M. Calleja, Phys. Rev. B 86, 085316 (2012)

    Article  Google Scholar 

  3. J. Barthes, G. Colas des Francs, A. Bouhelier, J.-C. Weeber, A. Dereux, Phys. Rev. B 84, 073403 (2011)

    Article  Google Scholar 

  4. E.M. Purcell, Prys. Rev. 69, 681 (1946)

    Google Scholar 

  5. R. Ruppin, J. Chem. Phys. 76(4) (1982)

    Google Scholar 

  6. J. Gersten, A. Nitzan, Spectroscopic properties of molecules interacting with small dielectric particles. J. Chem. Phys. 75(3), 1139 (1981)

    Article  CAS  Google Scholar 

  7. V. Klimov, M. Ducloy, V. Letokhov, Quantum Electron. 31(7), 596 (2001)

    Article  Google Scholar 

  8. V. Giannini, A. Fernandez-Dominquez, S. Heck, S. Maier, Chem. Phys. 111, 3888 (2011)

    CAS  Google Scholar 

  9. D. Dregely, K. Lindfors, J. Dorfmüller, M. Hentschel, M. Becker, J. Wratchup, M. Lippitz, R. Vogelgesang, H. Gissen, Phys. Status Solidi B 249, 666 (2012)

    Article  CAS  Google Scholar 

  10. P. Berman (ed.), Cavity Quantum Electrodynamics (Academic, New York, 1994)

    Google Scholar 

  11. S. Haroche, in Fundamental System in Quantum Optics. ed. by J. Dalibard, J.M. Raimond, J. Zinn-Justin (Les Houches, 1990; Elsevier Science Publishers B V, 1992)

    Google Scholar 

  12. C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, X. Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, A. Maitre, Nano Lett. 13, 1516 (2013)

    Article  CAS  Google Scholar 

  13. R. Esteban, T.V. Teperik, J.J. Greffet, PRL 104, 026802 (2010)

    Article  CAS  Google Scholar 

  14. P. Vasa, W. Wang, R. Pomraenke, M. Lammers, M. Maiuri, C. Manzoni, G. Cerullo, C. Lienau, Nat. Photonics 7, 128 (2013)

    Article  CAS  Google Scholar 

  15. C. Van Vlack, P.T. Kristensen, S. Hughes, Phys. Rev B 85, 075303 (2012)

    Article  Google Scholar 

  16. A. Trügler, U. Hohenester, Phys. Rev. B 77, 115403 (2008)

    Article  Google Scholar 

  17. A.M. Kern, O.J.F. Martin, Phys. Rev. A 85, 022501 (2012)

    Article  Google Scholar 

  18. S. Stobbe, P.T. Kristensen, J.E. Mortensen, J.M. Hvam, J. Mork, P. Lodahl, Phys. Rev. B 86, 085304 (2012)

    Article  Google Scholar 

  19. R. Filter, S. Mühlig, T. Eichelkraut, C. Rockstuhl, F. Lederer, Phys. Rev B 86, 035404 (2012)

    Article  Google Scholar 

  20. A.M. Kern, O.J.F. Martin, Nano Lett. 11, 482 (2011)

    Article  CAS  Google Scholar 

  21. A.M. Kern, Alfred J. Meixner, O.J.F. Martin, ASCNano 6(11), 9828 (2012)

    CAS  Google Scholar 

  22. A. Cazé, R. Pierrat, R. Carminati, Photonics Nanostruct. Fundam. Appl. 10, 339 (2012)

    Article  Google Scholar 

  23. W.J.M. Kort-Kamp, F.S.S. Rosa, F.A. Pinheiro, C. Farina, Phys. Rev. A 87, 023837 (2013)

    Article  Google Scholar 

  24. A. Poddubny, P. Belov, P. Ginzburg, A. Zayats, Y. Kivshar, Phys. Rev. B 86, 035148 (2012)

    Article  Google Scholar 

  25. A. Poddubny, P. Belov, Y. Kivshar, Phys. Rev. B 87, 035136 (2013)

    Article  Google Scholar 

  26. M. Stockman, The spaser as a nanoscale quantum generator and amplifier. J. Opt. 12, 024004 (2010)

    Article  Google Scholar 

  27. D.J. Bergman, M.I. Stockman, PRL 90, 027402 (2003)

    Article  Google Scholar 

  28. M. Stockman, Spaser action, loss-compensation, and stability in plasmonic systems with gain. PRL 106, 156802 (2011)

    Article  Google Scholar 

  29. L. Novotny, B. Hecht, Principles of Nano-optics (Cambridge University Press, New York, 2006)

    Book  Google Scholar 

  30. H. Mertens, A.F. Koenderink, A. Polman, Phys. Rev. B 76, 115123 (2007)

    Article  Google Scholar 

  31. A.F. Koenderink, On the use of Purcell factors for plasmon antennas. Opt. Lett. 35, 4208 (2010)

    Article  CAS  Google Scholar 

  32. V. Ginzburg, UFN 140, 535 (1983) (in Russian)

    Article  Google Scholar 

  33. Weisskopf, Naturwissenschaften 27, 631 (1935)

    Google Scholar 

  34. Weisskopf, Phys. Today 34(11), 69 (1981)

    Google Scholar 

  35. Fermi, Rev. Mod. Phys. 4, 87 (1932)

    Google Scholar 

  36. H. Dung, L. Knoll, D.-G. Welsch, Phys. Rev. A 62, 3804 (2000)

    Article  Google Scholar 

  37. L. Knoll, S. Scheel, D.-G. Welsch, Quant-ph/000621-27 June (2000)

    Google Scholar 

  38. M.S. Yeung, T.K. Gustafson, Phys. Rev. A 54, 6 (1996)

    Article  Google Scholar 

  39. U. Fano, Description of states in quantum mechanics by density matrix and operator techniques. Rev. Mod. Phys. 29, 74 (1957)

    Article  Google Scholar 

  40. V.M. Fain, Quantum radio physics, v. 1: photons and nonlinear media. Sovetskoe Radio (1972) (in Russian)

    Google Scholar 

  41. V. Akulin, N. Karlov, Intensive resonance interaction in quantum electronics, Nauka (1987) (in Russian)

    Google Scholar 

  42. L. Novotny, N. van Hulst, Nat. Photonics 5, 83 (2011)

    Article  CAS  Google Scholar 

  43. A. Dorofeenko, A. Zyablovsky, A. Vinogradov, E. Andrianov, A. Pukhov, A. Lisyansky, Opt. Express 21, 14539 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arkadi Chipouline .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chipouline, A., Küppers, F. (2018). Relaxation of Inverted Quantum System Coupled with Metallic Nanoobjects. In: Optical Metamaterials: Qualitative Models. Springer Series in Optical Sciences, vol 211. Springer, Cham. https://doi.org/10.1007/978-3-319-77520-3_13

Download citation

Publish with us

Policies and ethics