Skip to main content

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 90))

Abstract

Among the various types of guided acoustic waves, acoustic wedge waves are non-diffractive and non-dispersive. Both properties make them susceptible to nonlinear effects. Investigations have recently been focused on effects of second-order nonlinearity in connection with anisotropy. The current status of these investigations is reviewed in the context of earlier work on nonlinear properties of two-dimensional guided acoustic waves, in particular surface waves. The role of weak dispersion, leading to solitary waves, is also discussed. For anti-symmetric flexural wedge waves propagating in isotropic media or in anisotropic media with reflection symmetry with respect to the wedge’s mid-plane, an evolution equation is derived that accounts for an effective third-order nonlinearity of acoustic wedge waves. For the kernel functions occurring in the nonlinear terms of this equation, expressions in terms of overlap integrals with Laguerre functions are provided, which allow for their quantitative numerical evaluation. First numerical results for the efficiency of third-harmonic generation of flexural wedge waves are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hadouaj, H., Maugin, G.A.: Une onde solitaire se propageant sur un substrat élastique recouvert d’un film mince. C. R. Acad. Sci. Paris 309, 1877–1881 (1989)

    MathSciNet  MATH  Google Scholar 

  2. Maugin, G.A., Hadouaj, H.: Solitary surface transverse waves on an elastic substrate coated with a thin film. Phys. Rev. B 44, 1266–1280 (1991)

    Article  Google Scholar 

  3. Maugin, G.A., Hadouaj, H., Malomed, B.A.: Nonlinear coupling between SH surface solitons and Rayleigh modes on elastic structures. Phys. Rev. B 45, 9688–9694 (1992)

    Article  Google Scholar 

  4. Hadouaj, H., Maugin, G.A.: Surface solitons on elastic surfaces: numerics. Wave Motion 16, 115–123 (1992)

    Article  MathSciNet  Google Scholar 

  5. Maugin, G.A.: Nonlinear waves in elastic crystals. Oxford University Press, Oxford (1999)

    MATH  Google Scholar 

  6. Maugin, G.A.: Nonlinear electromechanical effects and applications. World Scientific, Singapore (1985)

    Google Scholar 

  7. Parker, D.F.: Nonlinear surface acoustic waves on elastic and piezoelectric materials. In: Borissov, M., Spassov, L., Georgiev, Z., Avramov, I. (eds.) 2nd International Symposium on Surface Waves in Solids and Layered Structures and 4th International Scientific Technical Conference Acoustoelectronics ’89, Varna, September 1989, pp. 389–405. World Scientific, Singapore (1990)

    Google Scholar 

  8. Mayer, A.P., Maradudin, A.A.: Effects of nonlinearity and dispersion on the propagation of surface acoustic waves. In: Maugin, G.A. (ed.) Continuum Models and Discrete Systems, vol. 2, pp. 306–315. Longman, London (1991)

    Google Scholar 

  9. Andersen, D.R., Datta, S., Gunshor, R.L.: A coupled mode approach to modulational instability and envelope solitons. J. Appl. Phys. 54, 5608–5612 (1983)

    Article  Google Scholar 

  10. Reutov, V.P.: Use of the averaged variational principle for describing multiwave interactions of elastic surface waves. Izv. Vyssh. Uchebn. Zaved., Radiofiz. 16, 1690–1702 (1973) [Radiophys. Quantum Electron. 16, 1307–1316 (1973)]

    Article  Google Scholar 

  11. Kalyanasundaram, N., Ravindran, R., Prasad, P.: Coupled amplitude theory of nonlinear surface acoustic waves. J. Acoust. Soc. Am. 72, 488–493 (1982)

    Article  Google Scholar 

  12. Lardner, R.W.: Nonlinear surface waves on an elastic solid. Int. J. Eng. Sci. 21, 1331–1342 (1983)

    Article  MathSciNet  Google Scholar 

  13. Parker, D.F.: Waveform evolution for nonlinear surface acoustic waves. Int. J. Eng. Sci. 26, 59–75 (1988)

    Article  Google Scholar 

  14. Zabolotskaya, E.A.: Nonlinear propagation of plane and circular Rayleigh waves in isotropic solids. J. Acoust. Soc. Am. 91, 2569–2575 (1992)

    Article  Google Scholar 

  15. Mayer, A.P.: Surface acoustic waves in nonlinear elastic media. Phys. Rep. 256, 237–366 (1995)

    Article  Google Scholar 

  16. Eckl, C., Kovalev, A.S., Mayer, A.P., Lomonosov, A.M., Hess, P.: Solitary surface acoustic waves. Phys. Rev. E 70, 046604-1–15 (2004)

    Google Scholar 

  17. Hess, P., Lomonosov, A.M., Mayer, A.P.: Laser-based linear and nonlinear guided elastic waves at surfaces (2D) and wedges (1D). Ultrasonics 54, 39–55 (2014)

    Article  Google Scholar 

  18. Parker, D.F.: Stratification effects on nonlinear elastic surface waves. Phys. Earth Planet. Inter. 50, 16–25 (1988)

    Article  Google Scholar 

  19. Hamilton, M.F., Il’insky, Yu.A., Zabolotskaya, E.A.: Evolution equations for nonlinear Rayleigh waves. J. Acoust. Soc. Am. 97, 891–897 (1995)

    Article  Google Scholar 

  20. Lomonosov, A.M., Mikhalevich, V.G., Hess, P., Knight, E.Yu., Hamilton, M.F., Zabolotskaya, E.A.: Laser-generated nonlinear Rayleigh waves with shocks. J. Acoust. Soc. Am. 105, 2093–2096 (1999)

    Article  Google Scholar 

  21. Brysev, A.P., Krasilnikov, V.A., Podgornov, A.A., Solodov, I.Yu.: Direct observation of the form of an elastic wave with finite amplitude on a solid surface. Fiz. Tverd. Tela 26, 2104–2106 (1984) [Moscow University Physics Bulletin 26, 2104–2106 (1984)]

    Google Scholar 

  22. Lomonosov, A.M., Hess, P.: Nonlinear surface acoustic waves: Realization of solitary pulses and fracture. Ultrasonics 48, 482–487 (2008)

    Article  Google Scholar 

  23. Meegan, G.D., Hamilton, M.F., Il’inskii, Yu.A., Zabolotskaya, E.A.: Nonlinear Stoneley and Scholte waves. J. Acoust. Soc. Am. 106, 1712–1723 (1999)

    Article  Google Scholar 

  24. Mayer, A.: Evolution equation for nonlinear Bleustein-Gulyaev waves. Int. J. Engng. Sci. 29, 999–1004 (1991)

    Article  Google Scholar 

  25. Lagasse, P.: Analysis of a dispersion-free guide for elastic waves. Electron. Lett. 8, 372–373 (1972)

    Article  Google Scholar 

  26. Maradudin, A.A., Wallis, R.F., Mills, D.L., Ballard, R.L.: Vibrational edge modes in finite crystals. Phys. Rev. B 6, 1106–1111 (1972)

    Article  Google Scholar 

  27. Moss, S.L., Maradudin, A.A., Cunningham, S.L.: Vibrational edge modes for wedges with arbitrary interior angles. Phys. Rev. B 8, 2999–3008 (1973)

    Article  Google Scholar 

  28. Zavorokhin, G.L., Nazarov, A.I.: On elastic waves in a wedge. J. Math. Sci. 175, 646–650 (2011)

    Article  MathSciNet  Google Scholar 

  29. Pupyrev, P.D., Lomonosov, A.M., Nikodijevic, A., Mayer, A.P.: On the existence of guided acoustic waves at rectangular anisotropic edges. Ultrasonics 71, 278–287 (2016)

    Article  Google Scholar 

  30. Datta, S., Hunsinger, B.J.: Analysis of line acoustical waves in general piezoelectric crystals. Phys. Rev. B 16, 4224–4229 (1977)

    Article  Google Scholar 

  31. Sokolova, E.S., Kovalev, A.S., Mayer, A.P.: Second-order nonlinearity of wedge acoustic waves in anisotropic media. Wave Motion 50, 246–252 (2013)

    Article  MathSciNet  Google Scholar 

  32. McKenna, J., Boyd, G.D., Thurston, R.N.: Plate theory solution for guided flexural acoustic waves along the tip of a wedge. IEEE Trans. Sonics Ultrason. 21, 178–186 (1974)

    Article  Google Scholar 

  33. Parker, D.F.: Elastic wedge waves. J. Mech. Phys. Solids 40, 1583–1593 (1992)

    Article  MathSciNet  Google Scholar 

  34. Krylov, V.V.: Wedge acoustic waves: new theoretical and experimental results. In: Borissov, M., Spassov, L., Georgiev, Z., Avramov, I. (eds.) 2nd International Symposium on Surface Waves in Solids and Layered Structures and 4th International Scientific Technical Conference Acoustoelectronics ’89, Varna, September 1989, pp. 389–405. World Scientific, Singapore (1990)

    Google Scholar 

  35. Mozhaev, V.G.: Ray theory of wedge acoustic waves. Moscow Univ. Phys. Bull. 30, 38–42 (1989)

    Google Scholar 

  36. Krylov, V.V., Parker, D.F.: Harmonic generation and parametric mixing in wedge acoustic waves. Wave Motion 15, 185–200 (1992)

    Article  MathSciNet  Google Scholar 

  37. Krylov, V.V., Mayer, A.P., Parker, D.F.: Nonlinear evolution of initially sine-like wedge acoustic waves. In: Proceedings of the 1993 IEEE International Ultrasonics Symposium, pp. 765–768

    Google Scholar 

  38. Mayer, A.P., Garova, E.A., Mozhaev, V.G.: Nonlinear surface and wedge acoustic waves in the presence of weak dispersion. Proc. Estonian Acad. Sci. Phys. Math. 46, 85–93 (1997)

    MATH  Google Scholar 

  39. Mason, I.M., Motz, M.D., Chambers, J.: Parametric interaction of acoustic surface wedge waves. Electron. Lett. 8, 429–430 (1972)

    Article  Google Scholar 

  40. Adler, R., Hoskins, M., Datta, S., Hunsinger, B.J.: Unusual parametric effects on line acoustic waves. IEEE Trans. Sonics Ultrason. SU-26, 345–347 (1979)

    Article  Google Scholar 

  41. Matlak, K.H., Kim, J.Y., Jacobs, L.J., Qu, J.: Review of second harmonic generation measurement techniques for material state determination in metals. J. Nondestruct. Eval. 34, 273–296 (2015)

    Article  Google Scholar 

  42. Nazarov, V.E., Sutin, A.M.: Nonlinear elastic constants of solids with cracks. J. Acoust. Soc. Am. 102, 3349–3354 (1997)

    Article  Google Scholar 

  43. Leibfried, G., Ludwig, W.: Gleichgewichtsbedingungen in der Gittertheorie. Z. Phys. 160, 80–92 (1960)

    Article  MathSciNet  Google Scholar 

  44. Sharon, T.M., Maradudin, A.A., Cunningham, S.L.: Vibrational edge modes for small-angle wedges. Phys. Rev. B 8, 6024–6026 (1973)

    Article  Google Scholar 

  45. Hall, J.J.: Electronic Effects in the Elastic Constants of n-Type Silicon. Phys. Rev. 161, 756–761 (1967)

    Article  Google Scholar 

  46. Lomonosov, A.M., Pupyrev, P.D., Hess, P., Mayer, A.P.: Nonlinear one-dimensional guided wedge waves. Phys. Rev. B 92, 014112-1–5 (2015)

    Google Scholar 

  47. Hunter, J.K.: Nonlinear hyperbolic surface waves. In: Bressan, A., Chen, G.-Q.G., Lewicka, M., Wang, D. (eds.) Nonlinear Conservation Laws and Applications, pp. 303–314. Springer, Boston (2011)

    Chapter  Google Scholar 

  48. Chorin, A.J., Hald, O.H.: Viscosity-dependent inertial spectra of the Burgers and Korteweg–deVries–Burgers equations. Proc. Natl. Acad. Sci. U.S.A. 102, 3921–3923 (2005)

    Article  Google Scholar 

  49. Sokolova, E.S., Kovalev, A.S., Timler, R., Mayer, A.P.: On the dispersion of wedge acoustic waves. Wave Motion 50, 233–245 (2013)

    Article  MathSciNet  Google Scholar 

  50. Mayer, A.P., Lomonosov, A.M., Hess, P.: Nonlinear acoustic waves localized at crystal edges. In: Proceedings of the 2009 IEEE International Ultrasonics Symposium, pp. 1088–1091

    Google Scholar 

  51. Pupyrev, P.D.: Linear and nonlinear wedge waves in solids. Dissertation, Prokhorov General Physics Institute of the Russian Academy of Sciences (2017)

    Google Scholar 

  52. De Jong, B.H.W.S., Beerkens, R.G.C., van Nijnatten, P.A. (eds.): Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH, Weinheim (2000)

    Google Scholar 

  53. Bogardus, E.H.: Third-order elastic constants of Ge, MgO, and fused SiO2. J. Appl. Phys. 36, 2504–2513 (1965)

    Article  Google Scholar 

  54. Kondo, K., Iio, S., Sawaoka, A.: Nonlinear pressure dependence of the elastic moduli of fused quartz up to 3 GPa. J. Appl. Phys. 52, 2826–2831 (1981)

    Article  Google Scholar 

  55. Mayer, A.P., Mozhaev, V.G., Krylov, V.V., Parker, D.F.: Nonlinear acoustic waves in a slender wedge. In: Spatschek, K.H., Mertens, F.G. (eds.) Nonlinear Coherent Structures in Physics and Biology, pp. 279–282. Plenum, New York (1994)

    Chapter  Google Scholar 

  56. Ostrovsky, L.A., Johnson, P.A.: Dynamic nonlinear elasticity in geomaterials. Rivista del Nuovo Cimento 24, 1–46 (2001)

    Google Scholar 

  57. Korobov, A., Izossimova, M., Kokshaiskii, A., Agafonov, A.: Elastic waves in a wedge of aluminum alloy with permanent residual deformations. AIP Conf. Proc. 1685, 080005-1–4 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Peter Hess for helpful discussions. Financial support by Deutsche Forschungsgemeinschaft (Grant No. MA 1074/11) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas P. Mayer .

Editor information

Editors and Affiliations

Appendices

Appendix A

We define the operator

$$ D_{\alpha } (q) = \left\{ {\begin{array}{*{20}c} {iq\,\,\,\,\,\,{\text{for}}\,\,\,\alpha = 1} \\ {{\partial \mathord{\left/ {\vphantom {\partial {\partial x_{\alpha } \,\,{\text{for}}\,\,\,\alpha = 2,3}}} \right. \kern-0pt} {\partial x_{\alpha } \,\,{\text{for}}\,\,\,\alpha = 2,3}},} \\ \end{array} } \right. $$
(A.1)

and the quantities

$$ g_{I}^{(\alpha )} (x_{2} ,\,x_{3} ;\,q) = D_{\alpha } (q)\hat{f}_{I} (| q | x_{2} ,| q | x_{3} )\,, $$
(A.2)

which possesses the scaling property for q > 0

$$ g_{I}^{(\alpha )} (x_{2} ,\,x_{3} ;\,q) = Xg_{I}^{(\alpha )} (Xx_{2} ,\,Xx_{3} ;\,{q \mathord{\left/ {\vphantom {q X}} \right. \kern-0pt} X}) $$
(A.3)

and, if the function fI is real,

$$ g_{I}^{(\alpha )} (x_{2} ,\,x_{3} ;\, - q) = g_{I}^{(\alpha )*} (x_{2} ,\,x_{3} ;\,q). $$
(A.4)

The elements of the matrix M in (8.2.7) may then be expressed in the form

$$ M_{IJ}^{(\alpha \beta )} (q) = {\iint\limits_{A}} {g_{I}^{(\mu )*} (x_{2} ,\,x_{3} ;\,q)C_{\alpha \mu \,\beta \nu } g_{J}^{(\nu )} (x_{2} ,\,x_{3} ;\,q)\,dx_{2} \,dx_{3} \,}. $$
(A.5)

The right-hand side of (A.2) implies that M does not depend on |q|, that

$$ M_{IJ}^{(\alpha \beta )} (q) = M_{JI}^{(\beta \alpha )*} (q) $$
(A.6)

and, if the functions fI are all real, which is the case with the choice (8.2.6), that

$$ M_{IJ}^{(\alpha \beta )} ( - q) = M_{IJ}^{(\alpha \beta )*} (q). $$
(A.7)

For the quantities V and W we obtain expressions analogous to (A.5),

$$ \begin{aligned} V_{IJK}^{(\alpha \beta \gamma )} ( - q,k,q - k) = & \iint\limits_{A} {S_{\alpha \mu \,\beta \nu \,\gamma \lambda } \,\,g_{I}^{(\mu )} (x_{2} ,\,x_{3} ;\, - q)} \\ & \quad \times \,g_{J}^{(\nu )} (x_{2} ,\,x_{3} ;\,k)\,g_{K}^{(\lambda )} (x_{2} ,\,x_{3} ;\,q - k)dx_{2} \,dx_{3} , \\ \end{aligned} $$
(A.8)
$$ \begin{aligned} W_{IJKL}^{(\alpha \beta \gamma \delta )} ( - q,k,k',q - k - k') = & \iint\limits_{A} {S_{\alpha \mu \,\beta \nu \,\gamma \lambda \,\delta \kappa } \,\,g_{I}^{(\mu )} (x_{2} ,\,x_{3} ;\, - q)} \\ & \quad \times \,g_{J}^{(\nu )} (x_{2} ,\,x_{3} ;\,k)\,g_{K}^{(\lambda )} (x_{2} ,\,x_{3} ;\,k')g_{L}^{(\kappa )} (x_{2} ,\,x_{3} ;\,q - k - k')dx_{2} \,dx_{3} \\ \end{aligned} $$
(A.9)

with scaling properties that follow from (A.3).

Appendix B

The kernel function in the effective second-order nonlinearity of the evolution Eq. (8.4.12) may be expressed in the form

$$ \begin{aligned} K_{2} ( - q,k,q - k) = & \frac{ - iq}{{\hat{N}\,k(q - k)}} \\ & \quad \times \sum\limits_{I,J,K} {\left\{ {V_{IJK}^{(1,\alpha \beta \gamma )} ( - q,k,q - k)\,w_{I}^{(\alpha )} ( - q)\,w_{J}^{(\beta )} (k)\,w_{K}^{(\gamma )} (q - k)} \right.} \\ & \quad + \,V_{IJK}^{(0,\alpha \beta \gamma )} ( - q,k,q - k)\,\left[ {w_{I}^{(\alpha )} ( - q)\,w_{J}^{(\beta )} (k)\,\,\Delta w_{K}^{(\gamma )} (q - k)} \right. \\ & \quad + \,\left. {\left. {w_{I}^{(\alpha )} ( - q)\,\,\,\Delta w_{J}^{(\beta )} (k)\,w_{K}^{(\gamma )} (q - k) + \Delta w_{I}^{(\alpha )} ( - q)\,\,w_{J}^{(\beta )} (k)\,w_{K}^{(\gamma )} (q - k)} \right]} \right\}. \\ \end{aligned} $$
(B.1)

It depends only on the signs and on ratios of the 1D wavevectors q, k, q − k, and it vanishes if the reflection symmetry with respect to the mid-plane of the wedge is not broken.

The kernel function in the effective third-order nonlinearity in (8.4.12) consists of a direct contribution, which is linear in the components of the eighth-rank tensor S, and an indirect contribution, which is quadratic in the sixth-rank tensor S, K3 = K3,d + K3,i, where

$$ \begin{aligned} K_{3,d} ( - q,k,k',q - k - k') = & \frac{ - q}{{3\hat{N}\,k\,k'\,(q - k - k')}} \\ & \, \times \,\sum\limits_{I,J,K,L} {\left[ {W_{IJKL}^{(0,\alpha \beta \gamma \delta )} ( - q,k,k',q - k - k')\,\,w_{I}^{(\alpha )} ( - q)\,\,w_{J}^{(\beta )} (k)\,\,w_{K}^{(\gamma )} (k')\,\,w_{L}^{(\delta )} (q - k - k')} \right]} \,,\, \\ \end{aligned} $$
(B.2)

and

$$ \begin{aligned} K_{3,i} ( - q,k,k',q - k - k') = & \frac{ - q}{{\hat{N}\,k\,k'\,(q - k - k')}} \\ & \quad \times \,\sum\limits_{I,J,K,L} {\left[ {w_{I}^{(\alpha )} ( - q)\,\,w_{J}^{(\beta )} (k)\,\,V_{IJK}^{(0,\alpha \beta \gamma )} ( - q,k,q - k)\,\,\varGamma_{KL}^{(\gamma \lambda )} (q - k)} \right.} \\ & \quad \times \,\left. {V_{LMN}^{(0,\lambda \mu \nu )} ( - q + k,k',q - k - k')w_{M}^{(\mu )} (k')\,\,w_{N}^{(\nu )} (q - k - k')} \right]\,. \\ \end{aligned} $$
(B.3)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Pupyrev, P.D., Lomonosov, A.M., Sokolova, E.S., Kovalev, A.S., Mayer, A.P. (2018). Nonlinear Acoustic Wedge Waves. In: Altenbach, H., Pouget, J., Rousseau, M., Collet, B., Michelitsch, T. (eds) Generalized Models and Non-classical Approaches in Complex Materials 2. Advanced Structured Materials, vol 90. Springer, Cham. https://doi.org/10.1007/978-3-319-77504-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77504-3_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77503-6

  • Online ISBN: 978-3-319-77504-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics