Skip to main content

Dispersion Properties of a Closed-Packed Lattice Consisting of Round Particles

  • Chapter
Generalized Models and Non-classical Approaches in Complex Materials 2

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 90))

Abstract

A two-dimensional discrete model for a hexagonal (closed-packed) lattice with elastically interacting round particles possessing two translational and one rotational degrees of freedom is considered. The linear differential-difference equations are obtained by the method of structural modeling to describe propagation of longitudinal, transverse and rotational waves in the medium. The dispersion properties of the model are analyzed. Existence of a backward wave is revealed. The numerical estimations of threshold frequencies of acoustic and rotational waves are given for some values of microstructure parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Erofeyev, V.I.: Wave Processes in Solids with Microstructure. World Scientific Publishing, New Jersey-London-Singapore-Hong Kong-Bangalore-Taipei (2003)

    Book  Google Scholar 

  2. Ghoniem, N.M., et al.: Multiscale modelling of nanomechanics and micromechanics: an over-view. Phil. Mag. 83, 3475–3528 (2003)

    Article  Google Scholar 

  3. Berglund, K.: Structural Models of Micropolar Media. In: Brulin, O., Hsieh, R.K.T. (eds.) Mechanics of Micropolar Media, pp. 35–86. World Scientific, Singapore (1982)

    Chapter  Google Scholar 

  4. Li, Chunyu, Chou, Tsu-Wei: A structural mechanics approach for the analysis of carbon nanotubes. Int. J. Solids Struct. 40, 2487–2499 (2003)

    Article  Google Scholar 

  5. Pavlov, I.S., Potapov, A.I.: Structural models in mechanics of nanocrystalline media. Dokl. Phys. 53, 408–412 (2008)

    Article  Google Scholar 

  6. Porubov, A.V., Berinskii, I.E.: Non-linear plane waves in materials having hexagonal internal structure. Int. J. Non-Linear Mech. 67, 27–33 (2014)

    Article  Google Scholar 

  7. Porubov, A.V., Berinskii, I.E.: Two-dimensional nonlinear shear waves in materials having hexagonal lattice structure. Math. Mech. Solids 21, 94–103 (2016)

    Article  MathSciNet  Google Scholar 

  8. Broberg, K.B.: The cell model of materials. Comput. Mech. 19, 447–452 (1997)

    Article  Google Scholar 

  9. Bogomolov, V.N., Parfen’eva, L.S., Smirnov, I.A., Misiorek, H., Jzowski, A.: Phonon propagation through photonic crystals—media with spatially modulated acoustic properties. Phys. Solis State 44, 181–185 (2002)

    Article  Google Scholar 

  10. Steurer, W., Sutter-Widmer, D.: Photonic and phononic quasicrystals. J. Phys. D 40, R229–R247 (2007)

    Article  Google Scholar 

  11. Vetrov, S.Ya., Timofeev, I.V., Rudakova, N.V.: Band structure of a two-dimensional resonant photonic crystal. Phys. Solid State 52, 527–532 (2010)

    Article  Google Scholar 

  12. Yablonovitch, E., Gmitter, T.J., Leung, K.M.: Photonic band structure (2003) The face-centered cubic case employing nonspherical atoms. Phys. Rev. Lett. 67, 2295 (1991)

    Article  Google Scholar 

  13. Fujii, M., Kanzaea, Y., Hayashi, S., Yamamoto, K.: Raman scattering from acoustic phonons confined in Si nanocrystals. Phys. Rev. B 54, R8373 (1996)

    Article  Google Scholar 

  14. Sigalas, M.M., Economou, E.N.: Elastic and acoustic-wave band-structure. J. Sound Vib. 158, 377–382 (1992)

    Article  Google Scholar 

  15. Pichard, H., Duclos, A., Groby, J.-P., Tournat, V., Gusev, V.E.: Two-dimensional discrete granular phononic crystal for shear wave control. Phys. Rev. B 86, 134307 (2012)

    Article  Google Scholar 

  16. Kushwaha, M.S., Halevi, P., Martinez, G., Dobrzynski, L., Djafari-Rouhani, B.: Theory of band structure of periodic elastic composites. Phys. Rev. B 49, 2313 (1994)

    Article  Google Scholar 

  17. Pavlov, I.S., Vasiliev, A.A., Porubov, A.V.: Dispersion properties of the phononic crystal consisting of ellipse-shaped particles. J. Sound Vib. 384, 163–176 (2016)

    Article  Google Scholar 

  18. Bayuk, I., Ammerman, M., Chesnokov, E.: Upscaling of elastic properties of anisotropic sedimentary rocks. Geophys. J. Int. 172, 842–860 (2008)

    Article  Google Scholar 

  19. Yalaev, T., Bayuk, I., Tarelko, N., Abashkin, A.: Connection of elastic and thermal properties of Bentheimer sandstone using effective medium theory (rock physics). ARMA-2016-128. 50th U.S. Rock Mechanics/Geomechanics Symposium, 26–29 June, Houston, Texas, pp. 1–7 (2016)

    Google Scholar 

  20. Dubinya, N., Tikhotsky, S., Bayuk, I., Beloborodov, D., Krasnova, M., Makarova, A., Rusina, O., Fokin, I. Prediction of physical-mechanical properties and in-situ stress state of hydrocarbon reservoirs from experimental data and theoretical modeling. In: SPE Russian Petroleum Technology Conference (SPE-187823-MS), pp. 1–15 (2017)

    Google Scholar 

  21. Porubov, A.V., Aero, E.L., Maugin, G.A.: Two approaches to study essentially nonlinear and dispersive properties of the internal structure of materials. Phys. Rev. E 79, 046608 (2009)

    Article  MathSciNet  Google Scholar 

  22. Krivtsov, A.M.: Deformation and Destruction of Microstructured Solids. Fizmatlit Publishers, Moscow (in Russian) (2007)

    Google Scholar 

  23. Askar, A.: Lattice Dynamical Foundations of Continuum Theories. World-Scientific, Singapore (1985)

    Google Scholar 

  24. Metrikine, A.V., Askes, H.: An isotropic dynamically consistent gradient elasticity model derived from a 2D lattice. Philos. Mag. 86(21–22), 3259–3286 (2006)

    Article  Google Scholar 

  25. Vasiliev, A.A., Dmitriev, S.V., Miroshnichenko, A.E.: Multi-field approach in mechanics of structural solids. Int. J. Solids Struct. 47, 510–525 (2010)

    Article  Google Scholar 

  26. Vasiliev, A.A., Miroshnichenko, A.E., Dmitriev, S.V.: Multi-field modeling of a Cosserat lattice: models, wave filtering, and boundary effects. Eur. J. Mech. A/Solids 46, 96–105 (2014)

    Article  Google Scholar 

  27. Erofeev, V.I., Kazhaev, V.V., Pavlov, I.S.: Nonlinear localized strain waves in a 2D medium with microstructure In: Altenbach H. et al. (eds.), Generalized Continua as Models for Materials, 91 Advanced Structured Materials 22, pp. 91-110. Springer, Berlin, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36394-8_6,

    Google Scholar 

  28. Erofeev, V.I., Pavlov, I.S., Leontiev, N.V.: A mathematical model for investigation of nonlinear wave processes in a 2D granular medium consisting of spherical particles. Compos. Mech. Comput. Appl. Int. J. 4, 239–255 (2013)

    Article  Google Scholar 

  29. Pavlov, I.S., Potapov, A.I., Maugin, G.A.: A 2D granular medium with rotating particles. Int. J. Solids Struct. 43, 6194–6207 (2006)

    Article  Google Scholar 

  30. Potapov, A.I., Pavlov, I.S., Lisina, S.A.: Acoustic identification of nanocrystalline media. J. Sound Vib. 322, 564–580 (2009)

    Article  Google Scholar 

  31. Spadoni, A., Ruzzene, M., Gonella, S., Scarpa, F.: Phononic properties of hexagonal chiral lattices. Wave Motion 46, 435–450 (2009)

    Article  MathSciNet  Google Scholar 

  32. Spadoni, A., Ruzzene, M., Scarpa, F.: Dynamic response of chiral truss-core assemblies. J. Intell. Mater. Syst. Struct. 17, 941–952 (2006)

    Article  Google Scholar 

  33. Pierce, J.R.: Almost All about Waves. Dover Publications (2006)

    Google Scholar 

  34. Ostrovsky, L.A., Papko, V.V., Pelinovsky, E.N.: Solitary electromagnetic waves in nonlinear lines. Radiophys. Quantum Electron. 15, 438–446 (1972)

    Article  Google Scholar 

  35. Ostrovsky, L.A., Potapov, A.I.: Modulated Waves: theory and applications. The Johns Hopkins University Press, Baltimore, MD (1999)

    MATH  Google Scholar 

  36. Kittel, C.: Introduction to Solid State Physics, 8th edn. Wiley (2005)

    Google Scholar 

  37. Reisland, J.A.: Phys. Phon. Wiley, London-New York-Sydney-Toronto (1973)

    Google Scholar 

  38. Stroscio, M., Dutta, M.: Phon. Nanostruct. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  39. Potapov, A.I., Pavlov, I.S., Lisina, S.A.: Identification of nanocrystalline media by acoustic spectroscopy methods. Acoust. Phys. 56, 588–596 (2010)

    Article  Google Scholar 

  40. Merkel, A., Tournat, V., Gusev, V.: Dispersion of elastic waves in three-dimensional noncohesive granular phononic crystals: properties of rotational modes. Phys. Rev. E 82(031305), 8 (2010)

    Google Scholar 

  41. Andrianov, I.V., Kholod, E.G., Weichert, D.: Application of quasi-continuum models for perturbation analysis of discrete kinks. Nonlinear Dyn. 68, 1–5 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research was carried out within the framework of the Russian State assignment to IAP RAS (topic No 0035-2014-0402, State Registration No 01201458047, V.I.E. and I.S.P.), as well as under the financial support of the Russian Foundation for Basic Research (projects No 18-08-00715-a, 16-08-00776-(V.I.E. and I.S.P.), 16-08-00971-a (I.S.P. and A.A.V.), and 16-01-00068-a (A.V.P.)) and the Ministry of Education and Science of the Russian Federation within the framework of the basic part of State Work for scientific activity (project 9.7446.2017/8.9, A.A.V.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir I. Erofeev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Erofeev, V.I., Pavlov, I.S., Porubov, A.V., Vasiliev, A.A. (2018). Dispersion Properties of a Closed-Packed Lattice Consisting of Round Particles. In: Altenbach, H., Pouget, J., Rousseau, M., Collet, B., Michelitsch, T. (eds) Generalized Models and Non-classical Approaches in Complex Materials 2. Advanced Structured Materials, vol 90. Springer, Cham. https://doi.org/10.1007/978-3-319-77504-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77504-3_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77503-6

  • Online ISBN: 978-3-319-77504-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics