Skip to main content

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 90))

Abstract

The purpose of this work is to present general solutions for two-dimensional (2D) plane-strain contact problems within the framework of the generalized continuum theory of couple-stress elasticity. This theory is able to capture the scale effects, which are often observed in indentation problems with contact lengths comparable to the material microstructure. To this end, we formulate a number of basic contact problems in terms of singular integral equations using the pertinent Green’s function that corresponds to the solution of the analogue of the Flamant-Boussinesq problem of a half-space in couple-stress elasticity. In addition, we also provide results concerning the more complex traction boundary-value problem involving a deformable layer (again within couple-stress elasticity) of finite thickness superposed on a rigid half-space. We show that the contact behavior of materials with couple-stress effects depends strongly upon their microstructural characteristics, especially when the characteristic dimension of the microstructure becomes comparable to macroscopic characteristic dimensions of the contact problem. The latter lengths could be either the contact length/area or even the thickness of the layer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maranganti, R., Sharma, P.: A novel atomistic approach to determine strain-gradient elasticity constants: tabulation and comparison for various metals, semiconductors, silica, polymers and the (Ir) relevance for nanotechnologies. J. Mech. Phys. Solids 55, 1823–1852 (2007)

    Article  Google Scholar 

  2. Stelmashenko, N.A., Walls, M.G., Brown, L.M., Milman, Y.V.: Microindentations on W and Mo oriented single crystals: an STM study. Acta Metall. Mater. 41, 2855–2865 (1993)

    Article  Google Scholar 

  3. Ma, Q., Clarke, D.R.: Size dependent hardness of silver single crystals. J. Mater. Res. 10, 853–863 (1995)

    Article  Google Scholar 

  4. Poole, W.J., Ashby, M.F., Fleck, N.A.: Micro-hardness of annealed and work-hardened copper polycrystals. Scripta Mater. 34, 559–564 (1996)

    Article  Google Scholar 

  5. Huber, N., Nix, W.D., Gao, H.: Identification of elastic-plastic material parameters from pyramidal indentation of thin films. Proc. R. Soc. Lond. A 458, 1593–1620 (2002)

    Article  Google Scholar 

  6. Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42, 475–487 (1994)

    Article  Google Scholar 

  7. Larsson, P.L., Giannakopoulos, A.E., Söderlund, E., Rowcliffe, D.J., Vestergaard, R.: Analysis of Berkovich indentation. Int. J. Solids Struct. 33, 221–248 (1996)

    Article  Google Scholar 

  8. Han, C.-S., Nikolov, S.: Indentation size effects in polymers and related rotation gradients. J. Mater. Res. 22, 1662–1672 (2007)

    Article  Google Scholar 

  9. Fischer-Cripps, A.C.: Nanoindentation. Springer, New York (2004)

    Book  Google Scholar 

  10. Chen, X., Hutchinson, J.W., Evans, A.G.: Simulation of the high temperature impression of thermal barrier coatings with columnar microstructure. Acta Mater. 52, 565–571 (2004)

    Article  Google Scholar 

  11. Stupkiewicz, S.: Micromechanics of contact and interphase layers. In: Lecture Notes in Applied and Computational Mechanics, vol. 30. Springer, Berlin (2007)

    Google Scholar 

  12. Fleck, N.A., Zisis, Th: The erosion of EB-PVD thermal barrier coatings: the competition between mechanisms. Wear 268, 1214–1224 (2010)

    Article  Google Scholar 

  13. Zisis, Th, Fleck, N.A.: The elastic–plastic indentation response of a columnar thermal barrier coating. Wear 268, 443–454 (2010)

    Article  Google Scholar 

  14. Tekoglu, C., Onck, P.R.: Size effects in two dimensional Voronoi foams. A comparison between generalized continua and discrete models. J. Mech. Phys. Solids 56, 3541–3564 (2008)

    Article  Google Scholar 

  15. Muki, R., Sternberg, E.: The influence of couple-stresses on singular stress concentrations in elastic solids. Z. Angew. Math. Phys. (ZAMP) 16, 611–648 (1965)

    Article  MathSciNet  Google Scholar 

  16. Begley, M.R., Hutchinson, J.W.: The mechanics of size-dependent indentation. J. Mech. Phys. Solids 46, 2049–2068 (1998)

    Article  Google Scholar 

  17. Nix, W.D., Gao, H.: Indentation size effects in crystalline materials: a law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411–425 (1998)

    Article  Google Scholar 

  18. Shu, J.Y., Fleck, N.A.: The prediction of a size effect in microindentation. Int. J. Solids Struct. 35, 1363–1383 (1998)

    Article  Google Scholar 

  19. Wei, Y., Hutchinson, J.W.: Hardness trends in micron scale indentation. J. Mech. Phys. Solids 51, 2037–2056 (2003)

    Article  Google Scholar 

  20. Nielsen, K.L., Niordson, C.F., Hutchinson, J.W.: Strain gradient effects in periodic flat punch indenting at small scales. Int. J. Solids Struct. 51, 3549–3556 (2014)

    Article  Google Scholar 

  21. Cauchy, A.L.: Note sur l’ equilibre et les mouvements vibratoires des corps solides. Comptes-Rendus Acad. Paris 32, 323–326 (1851)

    Google Scholar 

  22. Voigt, W.: Theoretische Studien uber die Elasticitatsverhaltnisse der Krystalle. Abh. Ges. Wiss. Gottingen 34, 3–100 (1887)

    Google Scholar 

  23. Cosserat, E., Cosserat, F.: Theorie des Corps Deformables. Hermann et Fils, Paris (1909)

    MATH  Google Scholar 

  24. Toupin, R.A.: Theory of elasticity with couple-stress. Arch. Rat. Mech. Anal. 17, 85–112 (1964)

    Article  Google Scholar 

  25. Mindlin, R.D., Tiersten, H.F.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11, 415–448 (1962)

    Article  MathSciNet  Google Scholar 

  26. Koiter, W.T.: Couple-stresses in the theory of elasticity. Parts I and II. Proc. Ned Akad. Wet. B67, 17–44 (1964)

    MATH  Google Scholar 

  27. Chen, J.Y., Huang, Y., Ortiz, M.: Fracture analysis of cellular materials: a strain gradient model. J. Mech. Phys. Solids 46, 789–828 (1998)

    Article  MathSciNet  Google Scholar 

  28. Bigoni, D., Drugan, W.J.: Analytical derivation of Cosserat moduli via homogenization of heterogeneous elastic materials. ASME J. Appl. Mech. 74, 741–753 (2007)

    Article  MathSciNet  Google Scholar 

  29. Shodja, H.M., Zaheri, A., Tehranchi, A.: Ab initio calculations of characteristic lengths of crystalline materials in first strain gradient elasticity. Mech. Mater. 61, 73–78 (2013)

    Article  Google Scholar 

  30. Zhang, X., Sharma, P.: Inclusions and inhomogeneities in strain gradient elasticity with couple stresses and related problems. Int. J. Solids Struct. 42, 3833–3851 (2005)

    Article  Google Scholar 

  31. Lakes, R.S.: Experimental methods for study of Cosserat elastic solids and other generalized elastic continua. In: Continuum Models for Materials with Microstructure, pp. 1–25 (1995)

    Google Scholar 

  32. Lakes, R.S.: Strongly Cosserat elastic lattice and foam materials for enhanced toughness. Cell. Polym. 12, 17–30 (1993)

    Google Scholar 

  33. Lakes, R.S.: Size effects and micromechanics of a porous solid. J. Mater. Sci. 18, 2572–2580 (1983)

    Article  Google Scholar 

  34. Gourgiotis, P.A., Piccolroaz, A.: Steady-state propagation of a Mode II crack in couple stress elasticity. Int. J. Fract. 188, 119–145 (2014)

    Article  Google Scholar 

  35. Mindlin, R.D.: Influence of couple-stresses on stress concentrations. Exp. Mech. 3, 1–7 (1963)

    Article  Google Scholar 

  36. Green, A.E., Zerna, W.: Theoretical Elasticity. Oxford University Press, Oxford (1968)

    MATH  Google Scholar 

  37. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press, New York (1952)

    Google Scholar 

  38. Fung, Y.C.: Foundations of Solid Mechanics. Prentice-Hall, Englewood Cliffs, NJ (1965)

    Google Scholar 

  39. Timoshenko, S.P., Goodier, J.N.: Theory of Elasticity. McGraw-Hill, New York (1970)

    MATH  Google Scholar 

  40. Johnson, K.: Contact Mechanics. Cambridge University Press, Cambridge, UK (1985)

    Book  Google Scholar 

  41. Hills, D., Nowell, D.: Mechanics of Fretting Fatigue. Kluwer Academic Publishers, Dordrecht (1994)

    Book  Google Scholar 

  42. Barber, J.R.: Elasticity. In: Solid Mechanics and its Applications, vol. 172. Springer, Netherlands (2010)

    Google Scholar 

  43. Anagnostou, D.S., Gourgiotis, P.A., Georgiadis, H.G.: The Cerruti problem in dipolar gradient elasticity. Math. Mech. Solids 20, 1088–1106 (2013)

    Article  MathSciNet  Google Scholar 

  44. Gourgiotis, P.A., Zisis, Th: Two-dimensional indentation of microstructured solids characterized by couple-stress elasticity. J. Strain Anal. Eng. Design 51, 318–331 (2016)

    Article  Google Scholar 

  45. Zisis, Th, Gourgiotis, P.A., Baxevanakis, K.P., Georgiadis, H.G.: Some basic contact problems in couple-stress elasticity. Int. J. Solids Struct. 51, 2084–2095 (2014)

    Article  Google Scholar 

  46. Roos, B.W.: Analytic Functions and Distributions in Physics and Engineering. Wiley, New York (1969)

    MATH  Google Scholar 

  47. de Borst, R.: A generalisation of J2-flow theory for polar continua. Comput. Methods Appl. Mech. Eng. 103, 347–362 (1993)

    Article  Google Scholar 

  48. Vardoulakis, I., Sulem, J.: Bifurcation Analysis in Geomechanics. Blackie Academic & Professional (Chapman and Hall), London (1995)

    Google Scholar 

  49. Szegö, G.: Orthogonal Polynomials, vol. 23. Colloquium Publications, American Mathematical Society (1939)

    Google Scholar 

  50. Erdogan F., Gupta G.D., Cook T.S.: Numerical solution of singular integral equations. In: Sih, G.C. (ed.) Mechanics of Fracture: Methods of Analysis and Solutions of Crack Problems, vol. 1, pp. 368–425 (1973)

    Chapter  Google Scholar 

  51. Ioakimidis, N.I.: The numerical solution of crack problems in plane elasticity in the case of loading discontinuities. Eng. Fract. Mech. 15, 709–716 (1980)

    Article  Google Scholar 

  52. Sackfield, A., Truman, C.E., Hills, D.A.: The tilted punch under normal and shear load (with application to fretting tests). Int. J. Mech. Sci. 43, 1881–1892 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haralambos G. Georgiadis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Zisis, T., Gourgiotis, P.A., Georgiadis, H.G. (2018). Contact Mechanics in the Framework of Couple Stress Elasticity. In: Altenbach, H., Pouget, J., Rousseau, M., Collet, B., Michelitsch, T. (eds) Generalized Models and Non-classical Approaches in Complex Materials 2. Advanced Structured Materials, vol 90. Springer, Cham. https://doi.org/10.1007/978-3-319-77504-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77504-3_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77503-6

  • Online ISBN: 978-3-319-77504-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics