Skip to main content

Damping in Materials and Structures: An Overview

  • Chapter

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 90))

Abstract

For ordinary people, mechanical damping is the attenuation of a motion over time under possible eventual external actions. The phenomenon is produced by the loss or dissipation of energy during motion and thus time. The concept of real time is therefore at the center of the phenomenon of damping and given the recent scientific contributions (of gravitational waves in 2016), the notion of space-time calls for reflections and comments. The systemic approach of the phenomenon taking into account the mechanical system, its input and output variables (generalized forces or displacements) allows a very convenient analysis of the phenomenon. We insist on the differences between a phenomenon and a system: the causality, the linearity, the hysteresis are for example properties of phenomena and not properties of system; on the other hand we can consider dissipative or non-dissipative systems. We describe some macroscopic dissipation mechanisms in structures and some microscopic dissipation at the molecular level in materials or mesoscopic dissipation in composites materials. After specifying the notion of internal forces of a system we present some classical dissipative mechanisms currently used: viscous dissipation, friction dissipation, micro-frictions. The purpose of this presentation is not to list new dissipative systems but to point out a number of errors, both scientific and technical, which are frequently committed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aström, K.J., de Wit, C.C.: Revisistings the LuGre friction model. IEEE Control Syst. Mag. 28(6), 101–114 (2008)

    Google Scholar 

  2. Bagley, R.L., Torvik, P.J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27(3), 201–210 (1983)

    Article  Google Scholar 

  3. Beda, T., Chevalier, Y.: Sur le comportement statique et dynamique des élastomères en grandes déformations. Mécanique industrielle et Matériaux 50(5), 228–231 (1997)

    Google Scholar 

  4. Berik, P., Benjeddou, A.: Static experimentation of the piezoceramic d15-shear actuation for sanswich structures with opposite or same poled patches-assembled core and composite faces. Int. J. Smart Nano Mat. 2(4), 230–244 (2011)

    Google Scholar 

  5. Bliman, P.A.: Mathematical study of the Dahl’s friction model. Eur. J. Mech. A/Solids 11(6), 835–848 (1992)

    MathSciNet  MATH  Google Scholar 

  6. Bouvier, D., Helic, T., Roze, D.: Représentation en séries de Volterra d’un modèle passif de Haut-parleur électrodynamique avec suspension non-linéaire et perspectives pour identification, Congrès Français d’acoustique, HAL Id: hal-01441060, Le mans; April 2016. https://hal.archives-ouvertes.fr/hal-01441060/document

  7. Chatain, M.: Comportement physique et thermodynamique en relation avec la structure, Techniques de l’ingénieur, traité plastiques et composites AM1, A3110, 3111, 3112 (1993)

    Google Scholar 

  8. Chevalier, Y.: Micromécanique des composites-Prévision en élasticité, en viscoélasticité et à la rupture, Technique de l’ingénieur, traité A7778 et A7780, 22 pages. Paris (1991)

    Google Scholar 

  9. Chevallier, G.: Etude des vibrations de broutement provoquées par le frottement sec-Application aux systèmes d’embrayage, Thèse Université P.M .Curie-ISMEP, 171 pages. Paris (Oct 2005). http://lismma.supmeca.fr/theses/These_Chevallier.pdf

  10. Chevalier, Y., Vinh, J.T.: Mechanical characterization of material and waves dispersion, ISTE Ltd, London (U.K) and John Wiley & Sons, Hoboken (NJ-USA), (2010)

    Google Scholar 

  11. Dahl, P.: A solid friction damping of mechanical vibrations. AIAA J. 14, 1675–1682 (1976)

    Article  Google Scholar 

  12. Eyring, H.: The activated complex in chemical reactions. J. Chem. Phys. 3, 107–115 (1935)

    Article  Google Scholar 

  13. Ferry, J.D.: Viscoelastic properties of polymers, 3ième edn. Editions John Wiley & Sons, New York (1980)

    Google Scholar 

  14. Gacem, H., Chevalier, Y., Dion, J.L., Rezgui, B.: Non-linear dynamic behavior of a preloades thin sanswich plate incorporating Visco-hyperelastic layers. J. Sound Vibrat. 322(4–5), 941–953 (2009)

    Article  Google Scholar 

  15. Gacem, H.: Comportement visco-hyperélastique des élastomères- Viscoélasticité non-linéaire, application aux multicouches, Thèse Université P.M. Curie, Paris (2007)

    Google Scholar 

  16. Gacem, H., Chevalier, Y., Dion, J.L., Rezgui, B.: Long term prediction of non-linear viscoelastic creep behavior of elastomers: extended Schapery model. Mech. Ind. 9(3), 407–416 (2009)

    Google Scholar 

  17. Germain, P.: Mécanique des milieux continus. Théorie Générale, Editions Masson, Paris (1973)

    MATH  Google Scholar 

  18. Haoui, A., Vinh, T., Chevalier, Y.: Application of Hilbert transform in the analysis of non linear structures. In: 2nd International Modal Analysis Conferences. Orland, USA, (Florida) (1984)

    Google Scholar 

  19. Huet, C.: Relation between creep and relaxation function in nonlinear viscoelasticity. J. Rheol. 29(3), 247–257 (1985)

    Article  Google Scholar 

  20. Kirchhoff, G.: Über den Einfluß der Wärmeleitung in einem Gas auf die Schallbewegung. Poggendorffs, Ann 134, 177 (1868)

    Google Scholar 

  21. Knauss, W.G., Emri, I.J.: Non-linear viscoelasticity based on free volume consideration. Comput. Struct. 13, 123–128 (1981)

    Article  Google Scholar 

  22. Knauss, W.G., Emri, I.J.: Volume change and the non-linear thermo-viscoelastic constitution of polymers. In: Yee, A. (ed.) Polymer Engineering and Sciences, vol. 27, pp. 86–100 (1987)

    Article  Google Scholar 

  23. Lai, J.S., Findley, N.W.: Stress relaxation of non-linear viscoelastic material under uniaxial strain. Trans. Soc. Rheol. 12, 259–280 (1968)

    Article  Google Scholar 

  24. Lene, F.: Technique d’homogénéisation des composites à renforts tissés, Mécanique, matériaux, Electricité, vol. 443 (1990)

    Google Scholar 

  25. Lee, G.F., Hartmann, B.: Specific damping capacity for arbitrary loss angle. J. Sound Vibrat. 211(2), 265–272 (1998)

    Article  Google Scholar 

  26. Locket, F.J.: Non-linear viscoelastic solids, Academic Press (1972)

    Google Scholar 

  27. Majeed, M., Benjeddou A.: Semi-analytical free-vibrations analysis of piezoelectric adaptive beams using the distributed transfer function approach, structural control ACA structural control and health monitoring, 18(7), 723–736 (2011)

    Article  Google Scholar 

  28. Maugin, G.A.: The method of virtual power in continuum mechanics-Application of coupled fields. Acta Mechanica 35 (1980)

    Article  MathSciNet  Google Scholar 

  29. Maugin, G.A.: Non Classical Continuum Mechanics dictionary. In: Advanced Structure Materials, Springer, Singapore (2017)

    Google Scholar 

  30. Molinari, G. A.: Sur la relaxation entre fluage et relaxation en viscoélasticité non linéaire, C.R. Acad. Sciences, tome 277, série A, pp. 621–623. Paris (1973)

    Google Scholar 

  31. Mullins, L.: Softening of rubber by deformation. Rubber Chem. Technol. 42, 339 (1969)

    Article  Google Scholar 

  32. Naejus, C.: Sur la formulation des problèmes de contact avec frottement de Coulomb, Thèse Université de Poitiers, Sept (1995)

    Google Scholar 

  33. Naslin, P.: Isaac Newton. La technique moderne 3–4, 28–35 (1998)

    Google Scholar 

  34. O’dowd, N.P., Knauss, W.G., A time dependent large principal deformation of polymers. J. Mech. Phys. Solids 43(5), 771–792 (1995)

    Article  Google Scholar 

  35. Peyret, N., Dion, J.L., Chevallier, G., Argoul, P.: Micro-slip induced damping in planar contact under constant and uniform normal stress. Int. J. Appl. Mech. 02(02), 281–304 (2010)

    Article  Google Scholar 

  36. Pulino-Sagradi, D., Sagradi, M., Martin, J.L.: Noise and vibrations damping of Fe-Cr-X alloys. J. Braz. Soc. Mech. Sci. 23(2), Rio de Janeiro (2001)

    Google Scholar 

  37. Renard, J.: Elaboration, microstructure et comportement des matériaux composites à matrice polymère, Traité MIM série polymère, Editions Hermès. Paris (2005)

    Google Scholar 

  38. Rouse, P.E.: A Theory of the linear viscoelastic properties of dilute solutions of coiling polymers. J. Chem. Phys. 21(7) (1953)

    Article  Google Scholar 

  39. Salencon, J.: Mécanique des milieux continus-Concepts généraux, Editions Ellipses de L’école polytechnique. Palaiseau (2007)

    Google Scholar 

  40. Schapery, R.A.: Thermodynamical behavior of viscoelastic media with variable properties subjected to cyclic loadin. J. Appl. Mech. 35, 1451–1465 (1964)

    MathSciNet  Google Scholar 

  41. Schapery, R.A.: A thermodynamic constitutive theory and its application to various nonlinear materials. Int. J. Sol. Struct. 2(3), 407–425 (1966)

    Article  Google Scholar 

  42. Soula, M., Chevalier, Y.: La dérivée fractionnaire en rhéologie des polymères: Application aux comportements élastiques et viscoélastiques linéaires et non linéaires des élastomères. ESAIM Proc. 5, 193–204 (1998)

    Article  Google Scholar 

  43. Valanis, K.C., Landel, R.F.: Large axial deformation behavior of filled rubber. Tans. Soc. Rheol. 11(2), 213–256 (1967)

    Google Scholar 

  44. Vinh, T., Sorin, P.: Sur la détermination du module complexe d’Young et de l’amortissement des matériaux viscoélastiques par flexion alternée, Sciences et techniques de l’armement, 4ième fascicule, pp. 979–1007 (1963)

    Google Scholar 

  45. Zaoustos, S.P., Papanicolaou, G.C.: Study of the effect of fibre orientation on the nonlinear viscoelastic behavior of continuous fibre polymer composites. In: Reifsnider, K.L., Verchery, G. (eds.) Recent Developments in Durability Analysis of Composite Systems, pp. 375–379. Cardon, Fukuda, Balkema, Rotterdam (2000)

    Google Scholar 

  46. Zener, C.: Elasticité et anélasticité des métaux, Editions Dunod, pp. 55–100. Paris (1955)

    Google Scholar 

  47. Vinh, T., Haoui, A., Fei, B.J., Chevalier, Y.: Extension de l’analyse modale aux systèmes non linéaire par la transformée de Hilbert, Matériaux, Mécanique, Electricité, 404, 405, 405, pp. 5–14 (1984)

    Google Scholar 

  48. Wang, Y.C., Ludwigson, M., Lakes, R.S.: Deformation of extreme Viscoelastic metals and composites. Mat. Sci. Eng. A 370, 41–49 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvon Chevalier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Cite this chapter

Chevalier, Y. (2018). Damping in Materials and Structures: An Overview. In: Altenbach, H., Pouget, J., Rousseau, M., Collet, B., Michelitsch, T. (eds) Generalized Models and Non-classical Approaches in Complex Materials 2. Advanced Structured Materials, vol 90. Springer, Cham. https://doi.org/10.1007/978-3-319-77504-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77504-3_1

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77503-6

  • Online ISBN: 978-3-319-77504-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics