Skip to main content

Quantum Mechanics of the Cell: An Emerging Field

  • Chapter
  • First Online:

Abstract

Cell is generally considered a classical system. The molecular structures inside it appear with ultra-level complexities. General physics concepts help construct popular biophysics techniques to understand the energy states and physiological functions of various cellular structures. Besides using statistical mechanics, classical mechanics, and other general physics rules, it is also found recently that quantum mechanics may be utilized to understand some of the crucial cellular aspects.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Chance, B., Nishimura, M. 1960. The mechanism of chlorophyll-cytochrome interaction: the temperature insensitivity of light-induced cytochrome oxidation in Chromatium. Proc. US Nat. Acad. Sci., 46, 19–24.

    Google Scholar 

  • Vredenberg, W.J., Duysens, L.N.M. 1964. Light-induced oxidation of cytochromes photosynthetic bacteria between 20 and-170°. Biochim. Biophys. Acta, 79, 456–463.

    Google Scholar 

  • Devault, D., Parkes, J.H., Chance, B. 1967. Electron Tunnelling in Cytochromes. Nature 215, 642–644.

    Google Scholar 

  • Ashrafuzzaman, Md., Tuszynski, J., Membrane Biophysics, Springer (Heidelberg), 2012, ISSN 1618-7210, ISBN 978-3-642-16104-9 ISBN 978-3-642-16105-6 (eBook), https://doi.org/10.1007/978-3-642-16105-6.

  • Ashrafuzzaman M, Tseng CY, Tuszynski JA. Regulation of channel function due to physical energetic coupling with a lipid bilayer. Biochem Biophys Res Commun. 2014 Mar 7;445(2):463–8.

    Google Scholar 

  • Md. Ashrafuzzaman. Phenomenology and energetics of diffusion across cell phase states. Saudi J. Biol. Sci. (2015a), 22, 666–673.

    Google Scholar 

  • Md. Ashrafuzzaman. Diffusion across cell phase states. Biomedical Sciences Today (2015b), 1:e4.

    Google Scholar 

  • P. Ball. Physics of life: The dawn of quantum biology. Nature 474, 272–274 (2011)

    Google Scholar 

  • G. Panitchayangkoon, D. Hayes, K. A. Fransted, J. R. Caram, E. Harel, J. Wen, R. E. Blankenship, and G. S. Engel. Long-lived quantum coherence in photosynthetic complexes at physiological temperature. PNAS. 2010:107 (29), 12766–12770

    Google Scholar 

  • Alisher M. Kariev, Vasiliy S. Znamenskiy, and Michael E. Green. Quantum Mechanical calculations of charge effects on gating the KcsA channel. Biochim Biophys Acta. 2007 May; 1768(5): 1218–1229.

    Google Scholar 

  • Doyle DA, Cabral JM, Pfuetzner RA, Kuo A, Gulbis JM, Cohen SL, Chait BT, MacKinnon R. The structure of the potassium channel: molecular basis of K + conduction and selectivity. Science. 1998;280:69–77.

    Google Scholar 

  • MacKinnon R, Cohen SL, Kuo A, Lee A, Chait BT. Structural conservation in prokaryotic and eukaryotic potassium channels. Science. 1998;280:106–109.

    Google Scholar 

  • Jiang Y, Lee A, Chen J, Cadene M, Chait BT, MacKinnon R. The open pore conformation of potassium channels. Nature. 2001;417:523–526.

    Google Scholar 

  • Alisher M. Kariev, Philipa Njau, and Michael E. Green. The Open Gate of the KV1.2 Channel: Quantum Calculations Show the Key Role of Hydration. Biophys J. 2014 February 4; 106(3): 548–555.

    Google Scholar 

  • Varma S., Rogers D.M., Rempe S.B. Perspectives on: ion selectivity: design principles for K + selectivity in membrane transport. J. Gen. Physiol. 2011;137:479–488.

    Google Scholar 

  • Dudev T., Lim C. Determinants of K + vs Na + selectivity in potassium channels. J. Am. Chem. Soc. 2009;131:8092–8101. [PubMed]

    Google Scholar 

  • Dudev T., Lim C. Factors governing the Na(+) vs K(+) selectivity in sodium ion channels. J. Am. Chem. Soc. 2010;132:2321–2332. [PubMed]

    Google Scholar 

  • Dudev T., Lim C. Why voltage-gated Ca2 + and bacterial Na + channels with the same EEEE motif in their selectivity filters confer opposite metal selectivity. Phys. Chem. Chem. Phys. 2012;14:12451–12456. [PubMed]

    Google Scholar 

  • Varma S., Rempe S.B. Multibody effects in ion binding and selectivity. Biophys. J. 2010;99:3394–3401.

    Google Scholar 

  • Bucher D., Rothlisberger U., Carloni P. QM/MM Car-Parrinello molecular dynamics study of selectivity in a potassium channel. ACS. 2004 Abstract PHYS-309.

    Google Scholar 

  • Bucher D., Rothlisberger U. Molecular simulations of ion channels: a quantum chemist’s perspective. J. Gen. Physiol. 2010;135:549–554. [PubMed]

    Google Scholar 

  • Maupin C.M., Wong K.F., Voth G.A. A multistate empirical valence bond description of protonatable amino acids. J. Phys. Chem. A. 2006;110:631–639.

    Google Scholar 

  • Michael A. Crawford, C. Leigh Broadhurst, Martin Guest, Atulya Nagar, Yiqun Wang, Kebreab Ghebremeskel, Walter F. Schmidt. A quantum theory for the irreplaceable role of docosahexaenoic acid in neural cell signalling throughout evolution. Prostaglandins, Leukotrienes and Essential Fatty Acids (PLEFA), Volume 88, Issue 1, January 2013, Pages 5–13

    Google Scholar 

  • R.H. Steele, A. Szent-Gyorgyi. On excitation of biological substances. Proc. Natl. Acad. Sci., 43 (1957), pp. 478–491

    Google Scholar 

  • J. Avery, Z. Bay, A. Szent-Gyorgi. On energy transfer in biological systems. Proc. Natl. Acad. Sci., 47 (1961), pp. 1742–1744

    Google Scholar 

  • D. Bendall, Interprotein Electron Transfer, in: D.S. Bendall, (Ed.), Protein Electron Transfer, Bios Scientific Publishers, Oxford, UK, 1996, pp. 43–68

    Google Scholar 

  • J.J. Hopfield. Electron transfer between biological molecules by thermally activated tunneling. Proc. Natl. Acad. Sci. USA, 71 (1974), pp. 3640–3644

    Google Scholar 

  • L. Hackermüller, S. Uttenthaler, K. Hornberger, E. Reiger, B. Brezger, A. Zeilinger, M. Arndt, M. Wave. Nature of biomolecules and fluorofullerenes. Phys. Rev. Lett., 91 (2003), p. 090408

    Google Scholar 

  • S. Hameroff, R. Penrose. Quantum computation in brain microtubules the Penrose-Hameroff Orch OR model of consciousness. Philos. Trans. R. Soc. London A, 356 (1998), pp. 1869–1896

    Google Scholar 

  • S. Hameroff. The conscious pilot-dendritic synchrony moves through the brain to mediate consciousness. J. Biol. Phys., 36 (1) (2010), pp. 71–93

    Google Scholar 

  • A.E. Allen, M.A. Cameron, T.M. Brown, A.A. Vugler, R.J. Lucas. Visual responses in mice lacking critical components of all known retinal phototransduction cascades. PLoS One, 5 (11) (2010), p. e15063

    Google Scholar 

  • K. Gawrisch, N.V. Eldho, L.L. Holte. The structure of DHA in phospholipid membranes. Lipids, 38 (4) (2003), pp. 445–452

    Google Scholar 

  • Horrocks LA, Yeo YK. Health benefits of docosahexaenoic acid (DHA). Pharmacol Res. 1999 Sep;40(3):211–25.

    Google Scholar 

  • Gregory S. Engel, Tessa R. Calhoun, Elizabeth L. Read, Tae-Kyu Ahn, Tomáš Mančal, Yuan-Chung Cheng, Robert E. Blankenship, Graham R. Fleming. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007).

    Google Scholar 

  • Gregory D. Scholes. Quantum-Coherent Electronic Energy Transfer: Did Nature Think of It First? J. Phys. Chem. Lett., 2010, 1 (1), pp 2–8

    Google Scholar 

  • Collini, E.; Curutchet, C.; Mirkovic, T.; Scholes, G. D. Electronic Energy Transfer in Photosynthetic Antenna Systems. In Energy Transfer Dynamics in Biomaterial Systems; Burghardt, I., May, V., Micha, D. A., Bittner, E. R., Eds.; Springer Verlag: Heidelberg/Berlin, Germany, 2009; Vol. 93.

    Google Scholar 

  • Hofmann, E.; Wrench, P. M.; Sharpies, F. P.; Hiller, R. G.; Welte, W.; Diederichs, K. Structural Basis of Light Harvesting by Carotenoids: Peridinin-Chlorophyll-Protein from Amphidinium Carterae. Science 1996, 272, 1788–1791.

    Google Scholar 

  • Wilk, K. E.; Harrop, S. J.; Jankova, L.; Edler, D.; Keenan, G.; Sharpes, F.; Hiller, R. G.; Curmi, P. M. G. Evolution of a Light-Harvesting Protein by Addition of New Subunits and Rearrangement of Conserved Elements: Crystal Structure of a Cryptophyte Phycoerythrin at 1.63-Å Resolution. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 8901–8906.

    Google Scholar 

  • Liu, Z. F.; Yan, H. C.;Wang, K. B.; Kuang, T. Y.; Zhang, J. P.; Gui, L. L.; An, X. M.; Chang, W. R. Crystal Structure of Spinach Major Light-Harvesting Complex at 2.72 Å Resolution. Nature 2004, 428, 287–292.

    Google Scholar 

  • Ganapathy, S.; Oostergetel, G. T.; Wawrzyniak, P. K.; Reus, M.; Chew,A.G.M.;Buda, F.; Boekema, E. J.;Bryant, D. A.;Holzwarth, A. R.; de Groot, H. J. M. Alternating Syn-Anti Bacteriochlorophylls Form Concentric HelicalNanotubes in Chlorosomes. Proc. Natl. Acad. Sci. U.S.A. 2009, 106, 8525–8530.

    Google Scholar 

  • McDermott, G.; Prince, S. M.; Freer, A. A.; Hawthornthwaite-Lawless, A. M.; Papiz,M. Z.; Cogdell,R. J.; Isaacs, N. W. Crystal Structure of an Integral Membrane Light-Harvesting Complex from Photosynthetic Bacteria. Nature 1995, 374, 517–521.

    Google Scholar 

  • Barros, T.; K€uhlbrandt, W. Crystallisation, Structure and Function of Plant Light-Harvesting Complex II. Biochim. Biophys. Acta 2009, 1787, 753–772.

    Google Scholar 

  • van der Weij-De Wit, C. D.; Doust, A. B.; van Stokkum, I. H. M.; Dekker, J. P.; Wilk, K. E.; Curmi, P. M. G.; Scholes, G. D.; van Grondelle, R. How. Energy Funnels from the Phycoerythrin Antenna Complex to Photosystem I and Photosystem II in Cryptophyte Rhodomonas CS24 Cells. J. Phys. Chem. B 2006, 110, 25066–25073.

    Google Scholar 

  • Collini, E.; Wong, C. Y.; Wilk, K. E.; Curmi, P. M. G.; Brumer, P.; Scholes, G. D. Coherently Wired Light-Harvesting in Photosynthetic Marine Algae at Ambient Temperature. Nature 2010, 463, 644–647

    Google Scholar 

  • Richard Hildner, Daan Brinks, Niek F. van Hulst. Femtosecond coherence and quantum control of single molecules at room temperature. Nature Physics 7, 172–177 (2011)

    Google Scholar 

  • Mohan Sarovar, Akihito Ishizaki, Graham R. Fleming, K. Birgitta Whaley. Quantum entanglement in photosynthetic light-harvesting complexes. Nature Physics 6, 462–467 (2010)

    Google Scholar 

  • Alivisatos, P. The use of nanocrystals in biological detection. Nature Biotechnol. 22, 47–52 (2004).

    Google Scholar 

  • Maze, J. R. et al. Nanoscale magnetic sensing with an individual electronic spin in diamond. Nature 455, 644–648 (2008).

    Google Scholar 

  • Balasubramanian, G. et al. Nanoscale imaging magnetometry with diamond spins under ambient conditions. Nature 455, 648–651 (2008).

    Google Scholar 

  • Chernobrod, B. M. & Berman, G. P. Spin microscope based on optically detected magnetic resonance. J. Appl. Phys. 97, 014903 (2005).

    Google Scholar 

  • Taylor, J. M. et al. High-sensitivity diamond magnetometer with nanoscale resolution. Nature Phys. 4, 810–816 (2008).

    Google Scholar 

  • Degen, C. L. Scanning magnetic field microscope with a diamond single-spin sensor. Appl. Phys. Lett. 92, 243111 (2008).

    Google Scholar 

  • Cole, J. H. & Hollenberg, L. C. L. Scanning quantum decoherence microscopy. Nanotechology 20, 495401 (2009).

    Google Scholar 

  • Hall, L. T., Cole, J. H., Hill, C. D. & Hollenberg, L. C. L. Sensing of fluctuating nanoscale magnetic fields using nitrogen-vacancy centers in diamond. Phys. Rev. Lett. 103, 220802 (2009).

    Google Scholar 

  • L. P. McGuinness, Y. Yan, A. Stacey, D. A. Simpson, L. T. Hall, D. Maclaurin, S. Prawer, P. Mulvaney, J. Wrachtrup, F. Caruso, R. E. Scholten, L. C. L. Hollenberg. Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. Nature Nanotechnology 6, 358–363 (2011)

    Google Scholar 

  • C. Bradac, T. Gaebel, N. Naidoo1, M. J. Sellars, J. Twamley, L. J. Brown, A. S. Barnard, T. Plakhotnik, A. V. Zvyagin & J. R. Rabeau. Observation and control of blinking nitrogen-vacancy centres in discrete nanodiamonds. Nature Nanotech. 5, 345–349 (2010).

    Google Scholar 

  • Dudev T., Lim C. Competition among Ca2 +, Mg2 +, and Na + for model ion channel selectivity filters: determinants of ion selectivity. J. Phys. Chem. B. 2012a;116:10703–10714.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ashrafuzzaman, M. (2018). Quantum Mechanics of the Cell: An Emerging Field. In: Nanoscale Biophysics of the Cell. Springer, Cham. https://doi.org/10.1007/978-3-319-77465-7_9

Download citation

Publish with us

Policies and ethics