Skip to main content

A Collection of Lower Bounds for Online Matching on the Line

  • Conference paper
  • First Online:
LATIN 2018: Theoretical Informatics (LATIN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10807))

Included in the following conference series:

Abstract

In the online matching on the line problem, the task is to match a set of requests R online to a given set of servers S. The distance metric between any two points in \(R\,\cup \,S\) is a line metric and the objective for the online algorithm is to minimize the sum of distances between matched server-request pairs. This problem is well-studied and – despite recent improvements – there is still a large gap between the best known lower and upper bounds: The best known deterministic algorithm for the problem is \(O(\log ^2n)\)-competitive, while the best known deterministic lower bound is 9.001. The lower and upper bounds for randomized algorithms are 4.5 and \(O(\log n)\) respectively.

We prove that any deterministic online algorithm which in each round: (i) bases the matching decision only on information local to the current request, and (ii) is symmetric (in the sense that the decision corresponding to the mirror image of some instance I is the mirror image of the decision corresponding to instance I), must be \(\varOmega (\log n)\)-competitive. We then extend the result by showing that it also holds when relaxing the symmetry property so that the algorithm might prefer one side over the other, but only up to some degree. This proves a barrier of \(\varOmega (\log n)\) on the competitive ratio for a large class of “natural” algorithms. This class includes all deterministic online algorithms found in the literature so far.

Furthermore, we show that our result can be extended to randomized algorithms that locally induce a symmetric distribution over the chosen servers. The \(\varOmega (\log n)\)-barrier on the competitive ratio holds for this class of algorithms as well.

A. Antoniadis—Supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under AN 1262/1-1.

C. Fischer—Supported by ERC Starting Grant 306465 (BeyondWorstCase).

A. Tönnis—Supported by Conicyt PCI PII 20150140. Work was done while the author was employed at the University of Bonn. Supported by ERC Starting Grant 306465 (BeyondWorstCase).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This could be resolved by for example letting the algorithm choose the server arbitrarily or allow the adversary to force the server selection in this specific border case.

References

  1. Antoniadis, A., Barcelo, N., Nugent, M., Pruhs, K., Scquizzato, M.: A o(n)-competitive deterministic algorithm for online matching on a line. In: Proceedings of 12th International Workshop Approximations and Online Algorithms (WAOA), pp. 11–22 (2014)

    Google Scholar 

  2. Bansal, N., Buchbinder, N., Gupta, A., Naor, J.: A randomized o(log2 k)-competitive algorithm for metric bipartite matching. Algorithmica 68(2), 390–403 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chung, C., Pruhs, K., Uthaisombut, P.: The online transportation problem: on the exponential boost of one extra server. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 228–239. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78773-0_20

    Chapter  Google Scholar 

  4. Fuchs, B., Hochstättler, W., Kern, W.: Online matching on a line. Theo. Comput. Sci. 332(1–3), 251–264 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gupta, A., Lewi, K.: The online metric matching problem for doubling metrics. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS, vol. 7391, pp. 424–435. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31594-7_36

    Chapter  Google Scholar 

  6. Kalyanasundaram, B., Pruhs, K.: Online weighted matching. J. Algorithms 14(3), 478–488 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kalyanasundaram, B., Pruhs, K.: The online transportation problem. SIAM J. Discrete Math. 13(3), 370–383 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Khuller, S., Mitchell, S.G., Vazirani, V.V.: On-line algorithms for weighted bipartite matching and stable marriages. Theo. Comput. Sci. 127(2), 255–267 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Koutsoupias, E.: The k-server problem. Comput. Sci. Rev. 3(2), 105–118 (2009)

    Article  MATH  Google Scholar 

  10. Koutsoupias, E., Nanavati, A.: The online matching problem on a line. In: Solis-Oba, R., Jansen, K. (eds.) WAOA 2003. LNCS, vol. 2909, pp. 179–191. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24592-6_14

    Chapter  Google Scholar 

  11. Meyerson, A., Nanavati, A., Poplawski, L.J.: Randomized online algorithms for minimum metric bipartite matching. In: Proceedings of 17th Symposium Discrete Algorithms (SODA), pp. 954–959 (2006)

    Google Scholar 

  12. Nayyar, K., Raghvendra, S.: An input sensintive online algorithm for the metric bipartite matching problem. In: FOCS (2017, to appear). http://ieee-focs.org/FOCS-2017-Papers/3464a505.pdf

  13. Raghvendra, S.: A robust and optimal online algorithm for minimum metric bipartite matching. In: Approximation, Randomization, and Combinatorial Optimization, APPROX/RANDOM, pp. 18:1–18:16 (2016)

    Google Scholar 

  14. van Stee, R.: SIGACT news online algorithms column 27: online matching on the line, part 1. SIGACT News 47(1), 99–110 (2016)

    Article  MathSciNet  Google Scholar 

  15. van Stee, R.: SIGACT news online algorithms column 28: online matching on the line, part 2. SIGACT News 47(2), 40–51 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Tönnis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Antoniadis, A., Fischer, C., Tönnis, A. (2018). A Collection of Lower Bounds for Online Matching on the Line. In: Bender, M., Farach-Colton, M., Mosteiro, M. (eds) LATIN 2018: Theoretical Informatics. LATIN 2018. Lecture Notes in Computer Science(), vol 10807. Springer, Cham. https://doi.org/10.1007/978-3-319-77404-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77404-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77403-9

  • Online ISBN: 978-3-319-77404-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics