Skip to main content

Maximal and Convex Layers of Random Point Sets

  • Conference paper
  • First Online:
LATIN 2018: Theoretical Informatics (LATIN 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10807))

Included in the following conference series:

Abstract

We study two problems concerning the maximal and convex layers of a point set in d dimensions. The first is the average-case complexity of computing the first k layers of a point set drawn from a uniform or component-independent (CI) distribution. We show that, for \(d \in \{2,3\}\), the first \(n^{1/d-\epsilon }\) maximal layers can be computed using \(dn + o(n)\) scalar comparisons with high probability. For \(d \ge 4\), the first \(n^{1/2d-\epsilon }\) maximal layers can be computed within this bound with high probability. The first \(n^{1/d-\epsilon }\) convex layers in 2D, the first \(n^{1/2d-\epsilon }\) convex layers in 3D, and the first \(n^{1/(d^2+2)}\) convex layers in \(d \ge 4\) dimensions can be computed using \(2dn + o(n)\) scalar comparisons with high probability. Since the expected number of maximal layers in 2D is \(2\sqrt{n}\), our result for 2D maximal layers shows that it takes \(dn + o(n)\) scalar comparisons to compute a \(1/n^\epsilon \)-fraction of all layers in the average case. The second problem is bounding the expected size of the kth maximal and convex layer. We show that the kth maximal and convex layer of a point set drawn from a continuous CI distribution in d dimensions has expected size \(O(k^d \log ^{d-1} (n/k^d))\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that \(\bigcup _{i=1}^k Q_i'\) is not a subset of the first k \(\sigma \)-skyline of S. A counterexample will be given in the full version of this paper.

References

  1. Bentley, J.L., Clarkson, K.L., Levine, D.B.: Fast linear expected-time algorithms for computing maxima and convex hulls. Algorithmica 9(2), 168–183 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bentley, J.L., Kung, H.T., Schkolnick, M., Thompson, C.D.: On the average number of maxima in a set of vectors and applications. J. ACM 25(4), 536–543 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  3. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77974-2

    Book  MATH  Google Scholar 

  4. Blunck, H., Vahrenhold, J.: In-place algorithms for computing (layers of) maxima. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 363–374. Springer, Heidelberg (2006). https://doi.org/10.1007/11785293_34

    Chapter  Google Scholar 

  5. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of the 17th International Conference on Data Engineering, pp. 421–430 (2001)

    Google Scholar 

  6. Buchsbaum, A.L., Goodrich, M.T.: Three-dimensional layers of maxima. Algorithmica 39(4), 275–286 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chazelle, B.: An optimal convex hull algorithm in any fixed dimension. Discret. Comput. Geom. 10(4), 377–409 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chazelle, B.: On the convex layers of a planar set. IEEE Trans. Inf. Theor. 31(4), 509–517 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dalal, K.: Counting the onion. Random Struct. Algorithms 24(2), 155–165 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Frieze, A.: On the length of the longest monotone subsequence in a random permutation. Ann. Appl. Probab. 1(2), 301–305 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Golin, M.J.: A provably fast linear-expected-time maxima-finding algorithm. Algorithmica 11(6), 501–524 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kung, H.T., Luccio, F., Preparata, F.P.: On finding the maxima of a set of vectors. J. ACM 22(4), 469–476 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  13. Matoušek, J., Plecháč, P.: On functional separately convex hulls. Discret. Comput. Geom. 19(1), 105–130 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press, New York (1995)

    Book  MATH  Google Scholar 

  15. Nielsen, F.: Output-sensitive peeling of convex and maximal layers. Inf. Process. Lett. 59(5), 255–259 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Okabe, A., Boots, B., Sugihara, K., Chiu, S., Kendall, D.G.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, Hoboken (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, M., Nguyen, C.P., Zeh, N. (2018). Maximal and Convex Layers of Random Point Sets. In: Bender, M., Farach-Colton, M., Mosteiro, M. (eds) LATIN 2018: Theoretical Informatics. LATIN 2018. Lecture Notes in Computer Science(), vol 10807. Springer, Cham. https://doi.org/10.1007/978-3-319-77404-6_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77404-6_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77403-9

  • Online ISBN: 978-3-319-77404-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics