Skip to main content

Incremental Strong Connectivity and 2-Connectivity in Directed Graphs

  • Conference paper
  • First Online:
LATIN 2018: Theoretical Informatics (LATIN 2018)

Abstract

In this paper, we present new incremental algorithms for maintaining data structures that represent all connectivity cuts of size one in directed graphs (digraphs), and the strongly connected components that result by the removal of each of those cuts. We give a conditional lower bound that provides evidence that our algorithms may be tight up to a sub-polynomial factors. As an additional result, with our approach we can also maintain dynamically the 2-vertex-connected components of a digraph during any sequence of edge insertions in a total of O(mn) time. This matches the bounds for the incremental maintenance of the 2-edge-connected components of a digraph.

Full version of this paper is available in https://arxiv.org/abs/1802.10189.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Throughout the paper, we use the term bridge to refer to a bridge of a flow graph and the term strong bridge to refer to a strong bridge in the original graph.

References

  1. Abboud, A., Vassilevska Williams, V.: Popular conjectures imply strong lower bounds for dynamic problems. In: FOCS, pp. 434–443 (2014)

    Google Scholar 

  2. Alstrup, S., Harel, D., Lauridsen, P.W., Thorup, M.: Dominators in linear time. SIAM J. Comput. 28(6), 2117–2132 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aspnes, J., Chang, K., Yampolskiy, A.: Inoculation strategies for victims of viruses and the sum-of-squares partition problem. J. Comput. Syst. Sci. 72(6), 1077–1093 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Buchsbaum, A.L., Georgiadis, L., Kaplan, H., Rogers, A., Tarjan, R.E., Westbrook, J.R.: Linear-time algorithms for dominators and other path-evaluation problems. SIAM J. Comput. 38(4), 1533–1573 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cohen, R., Havlin, S., Ben-Avraham, D.: Efficient immunization strategies for computer networks and populations. Phys. Rev. Lett. 91, 247901 (2003)

    Article  Google Scholar 

  6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  7. Eppstein, D., Galil, Z., Italiano, G.F.: Dynamic graph algorithms. In: Algorithms and Theory of Computation Handbook, 2nd edn, vol. 1, pp. 9:1–9:28. CRC Press (2009)

    Google Scholar 

  8. Franciosa, P.G., Gambosi, G., Nanni, U.: The incremental maintenance of a depth-first-search tree in directed acyclic graphs. Inf. Process. Lett. 61(2), 113–120 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Georgiadis, L., Hansen, T.D., Italiano, G.F., Krinninger, S., Parotsidis, N.: Decremental data structures for connectivity and dominators in directed graphs. In: ICALP, pp. 42:1–42:15 (2017)

    Google Scholar 

  10. Georgiadis, L., Italiano, G.F., Laura, L., Santaroni, F.: An experimental study of dynamic dominators. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 491–502. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33090-2_43

    Chapter  Google Scholar 

  11. Georgiadis, L., Italiano, G.F., Parotsidis, N.: Incremental 2-edge-connectivity in directed graphs. In: ICALP, pp. 49:1–49:15 (2016)

    Google Scholar 

  12. Georgiadis, L., Italiano, G.F., Parotsidis, N.: Strong connectivity in directed graphs under failures, with applications. In: SODA, pp. 1880–1899 (2017)

    Google Scholar 

  13. Gunawardena, J.: A linear framework for time-scale separation in nonlinear biochemical systems. PLoS ONE 7(5), e36321 (2012)

    Article  Google Scholar 

  14. Henzinger, M., Krinninger, S., Nanongkai, D., Saranurak, T.: Unifying and strengthening hardness for dynamic problems via the online matrix-vector multiplication conjecture. In: STOC, pp. 21–30 (2015)

    Google Scholar 

  15. Impagliazzo, R., Paturi, R.: On the complexity of k-SAT. J. Comput. Syst. Sci. 62(2), 367–375 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Italiano, G.F., Laura, L., Santaroni, F.: Finding strong bridges and strong articulation points in linear time. Theor. Comput. Sci. 447, 74–84 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: KDD, pp. 137–146 (2003)

    Google Scholar 

  19. Kuhlman, C.J., Anil Kumar, V.S., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J.: Finding critical nodes for inhibiting diffusion of complex contagions in social networks. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010. LNCS (LNAI), vol. 6322, pp. 111–127. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15883-4_8

    Chapter  Google Scholar 

  20. Mihalák, M., Uznański, P., Yordanov, P.: Prime factorization of the Kirchhoff polynomial: compact enumeration of arborescences. In: ANALCO, pp. 93–105 (2016)

    Google Scholar 

  21. Paudel, N., Georgiadis, L., Italiano, G.F.: Computing critical nodes in directed graphs. In: ALENEX, pp. 43–57 (2017)

    Google Scholar 

  22. Ramalingam, G., Reps, T.: An incremental algorithm for maintaining the dominator tree of a reducible flowgraph. In: POPL, pp. 287–296 (1994)

    Google Scholar 

  23. Shen, Y., Nguyen, N.P., Xuan, Y., Thai, M.T.: On the discovery of critical links and nodes for assessing network vulnerability. IEEE/ACM Trans. Netw. 21(3), 963–973 (2013)

    Article  Google Scholar 

  24. Tarjan, R.E.: Edge-disjoint spanning trees and depth-first search. Acta Informatica 6(2), 171–85 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ventresca, M., Aleman, D.: Efficiently identifying critical nodes in large complex networks. Comput. Soc. Netw. 2(1), 1–16 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikos Parotsidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Georgiadis, L., Italiano, G.F., Parotsidis, N. (2018). Incremental Strong Connectivity and 2-Connectivity in Directed Graphs. In: Bender, M., Farach-Colton, M., Mosteiro, M. (eds) LATIN 2018: Theoretical Informatics. LATIN 2018. Lecture Notes in Computer Science(), vol 10807. Springer, Cham. https://doi.org/10.1007/978-3-319-77404-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77404-6_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77403-9

  • Online ISBN: 978-3-319-77404-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics