Skip to main content

Fourier Entropy-Influence Conjecture for Random Linear Threshold Functions

  • Conference paper
  • First Online:
LATIN 2018: Theoretical Informatics (LATIN 2018)

Abstract

The Fourier-Entropy Influence (FEI) Conjecture states that for any Boolean function \(f:\{+1,-1\}^n \rightarrow \{+1,-1\}\), the Fourier entropy of f is at most its influence up to a universal constant factor. While the FEI conjecture has been proved for many classes of Boolean functions, it is still not known whether it holds for the class of Linear Threshold Functions. A natural question is: Does the FEI conjecture hold for a “random” linear threshold function? In this paper, we answer this question in the affirmative. We consider two natural distributions on the weights defining a linear threshold function, namely uniform distribution on \([-1,1]\) and Normal distribution.

N. Saurabh—The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Grant Agreement n. 616787.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits, Fourier transform, and learnability. J. ACM 40(3), 607–620 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boppana, R.B.: The average sensitivity of bounded-depth circuits. Inf. Process. Lett. 63(5), 257–261 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ganor, A., Komargodski, I., Lee, T., Raz, R.: On the noise stability of small Demorgan formulas, Technical report, Electronic Colloquium on Computational Complexity (ECCC) TR 12-174 (2012)

    Google Scholar 

  4. O’Donnell, R., Saks, M., Schramm, O.: Every decision tree has an influential variable. In: Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2005, pp. 31–39. IEEE Computer Society (2005)

    Google Scholar 

  5. O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  6. Friedgut, E., Kalai, G.: Every monotone graph property has a sharp threshold. Proc. Am. Math. Soc. 124(10), 2993–3002 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourgain, J., Kalai, G.: Influences of variables and threshold intervals under group symmetries. Geom. Funct. Anal. (GAFA) 7(3), 438–461 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mansour, Y.: An \(\cal{O}\)(n\(^{\log \log n}\)) learning algorithm for DNF under the uniform distribution. J. Comput. Syst. Sci. 50(3), 543–550 (1995)

    Article  MATH  Google Scholar 

  9. Gopalan, P., Kalai, A.T., Klivans, A.: Agnostically learning decision trees. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, STOC 2008, pp. 527–536 (2008)

    Google Scholar 

  10. Gopalan, P., Kalai, A., Klivans, A.R.: A query algorithm for agnostically learning DNF? In: 21st Annual Conference on Learning Theory - COLT 2008, 9–12 July 2008, Helsinki, Finland, pp. 515–516 (2008)

    Google Scholar 

  11. Friedgut, E.: Boolean functions with low average sensitivity depend on few coordinates. Combinatorica 18(1), 27–35 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kahn, J., Kalai, G., Linial, N.: The influence of variables on Boolean functions. In: Proceedings of the 29th Annual IEEE Symposium on Foundations of Computer Science, pp. 68–80 (1988)

    Google Scholar 

  13. O’Donnell, R., Wright, J., Zhou, Y.: The Fourier entropy–influence conjecture for certain classes of Boolean functions. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 330–341. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22006-7_28

    Chapter  Google Scholar 

  14. Kalai, G.: The entropy/influence conjecture. Terence Tao’s blog: https://terrytao.wordpress.com/2007/08/16/gil-kalai-the-entropyinfluence-conjecture/

  15. Klivans, A., Lee, H., Wan, A.: Mansour’s conjecture is true for random DNF formulas. In: Proceedings of the 23rd Conference on Learning Theory, pp. 368–380 (2010)

    Google Scholar 

  16. Das, B., Pal, M., Visavaliya, V.: The entropy influence conjecture revisited. Technical report, arXiv:1110.4301 (2011)

  17. O’Donnell, R., Tan, L.Y.: A composition theorem for the Fourier entropy-influence conjecture. In: Proceedings of Automata, Languages and Programming - 40th International Colloquium, pp. 780–791 (2013)

    Google Scholar 

  18. Chakraborty, S., Kulkarni, R., Lokam, S.V., Saurabh, N.: Upper bounds on Fourier entropy. Theor. Comput. Sci. 654, 92–112 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wan, A., Wright, J., Wu, C.: Decision trees, protocols and the entropy-influence conjecture. In: Innovations in Theoretical Computer Science, pp. 67–80 (2014)

    Google Scholar 

  20. Hicks, J.S., Wheeling, R.F.: An efficient method for generating uniformly distributed points on the surface of an n-dimensional sphere. Commun. ACM 2(4), 17–19 (1959)

    Article  MATH  Google Scholar 

  21. Muller, M.E.: A note on a method for generating points uniformly on n-dimensional spheres. Commun. ACM 2(4), 19–20 (1959)

    Article  MATH  Google Scholar 

  22. Marsaglia, G.: Choosing a point from the surface of a sphere. Ann. Math. Stat. 43(2), 645–646 (1972)

    Article  MATH  Google Scholar 

  23. Petersen, W.P., Bernasconi, A.: Uniform sampling from an \(n\)-sphere. Technical report. Swiss Center for Scientific Computing (1997)

    Google Scholar 

  24. Szarek, S.J.: On the best constants in the Khinchine inequality. Studia Math. 58, 197–208 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shevtsova, I.: Moment-type estimates with asymptotically optimal structure for the accuracy of the normal approximation. Annales Mathematicae Et Informaticae 39, 241–307 (2012)

    MathSciNet  MATH  Google Scholar 

  26. Boucheron, S., Lugosi, G., Massart, P.: Concentration Inequalities: A Nonasymptotic Theory of Independence. Oxford University Press, Oxford (2013)

    Book  MATH  Google Scholar 

  27. David, H.A., Nagaraja, H.N.: Order Statistics, 3rd edn. Wiley, Hoboken (2003)

    Book  MATH  Google Scholar 

  28. Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 1, 3rd edn. Wiley, Hoboken (1968)

    MATH  Google Scholar 

  29. Kane, D.M.: The correct exponent for the Gotsman-Linial Conjecture. Comput. Complex. 23(2), 151–175 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank the reviewers for helpful comments that improved the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Saurabh .

Editor information

Editors and Affiliations

A Reducing Non-homogeneous to Homogeneous case

A Reducing Non-homogeneous to Homogeneous case

Let \(f(x) = \mathsf {sign}(w_{0} + \sum _{i=1}^n w_ix_i)\) for all \(x \in \{+1,-1\}^n\). Recall from Eq. (2) we have an exact expression for the i-th influence for all \(1 \leqslant i \leqslant n\). We can relax the probability estimate to lower bound the influence as follows,

$$\begin{aligned} \mathsf {Inf}_i(f) \geqslant \frac{1}{2}\Pr _{x \in \{+1,-1\}^n}\left[ \left| w_0 + \sum _{j \leqslant n :j \ne i} w_jx_j\right| \leqslant |w_i| \right] . \end{aligned}$$
(8)

Now consider the function \(g(x_0, x_1, \dots , x_n) = \mathsf {sign}(\sum _{i=0}^{n} w_ix_i)\) by adding the extra variable \(x_{0}\). We claim that \(\mathsf {Inf}_i(g)\leqslant 2 \mathsf {Inf}_i(f)\), for all \(1\leqslant i \leqslant n\). Fix an \( i \in [n]\). From Eq. (2) we know that \(\mathsf {Inf}_i(g)\) equals

$$\begin{aligned} \frac{1}{2}\left( \Pr \left[ - |w_i|< w_0 + \sum _{1 \leqslant j \leqslant n :j \ne i} w_jx_j \leqslant |w_i| \right] + \Pr \left[ -|w_i| < - w_0 +\sum _{1 \leqslant j \leqslant n :j \ne i} w_jx_j \leqslant |w_i| \right] \right) , \end{aligned}$$

where the probabilities are uniform distribution over \(x_1, \dots , x_n \in \{+1,-1\}^n\). By relaxing the event in each case we have

$$\begin{aligned} \mathsf {Inf}_i(g)&\leqslant \frac{1}{2}\left( \Pr \left[ - |w_i| \leqslant w_0 + \sum _{1 \leqslant j \leqslant n :j \ne i} w_jx_j \leqslant |w_i| \right] + \Pr \left[ -|w_i| \leqslant - w_0 +\sum _{1 \leqslant j \leqslant n :j \ne i} w_jx_j \leqslant |w_i| \right] \right) . \end{aligned}$$

It is easily seen that,

$$\begin{aligned} \Pr _{x \in \{+1,-1\}^{n}}\left[ -|w_i| \leqslant w_0+\sum _{1\leqslant j \leqslant n :j \ne i} w_jx_j \leqslant |w_i| \right] = \Pr _{x \in \{+1,-1\}^{n}}\left[ -|w_i| \leqslant -w_0 + \sum _{1\leqslant j \leqslant n :j \ne i} w_jx_j \leqslant |w_i| \right] . \end{aligned}$$

Indeed, there exists a 1-1 correspondence between n-bit strings satisfying the left hand side event and the right hand side event. Thus,

$$\begin{aligned} \mathsf {Inf}_i(g) \leqslant \Pr _{x \in \{+1,-1\}^{n}}\left[ -|w_i| \leqslant w_0+\sum _{1\leqslant j \leqslant n :j \ne i} w_jx_j \leqslant |w_i| \right] \leqslant 2\cdot \mathsf {Inf}_i(f) , \end{aligned}$$

where the second inequality follows from (8).

Therefore, we have

$$\begin{aligned} \mathsf {Inf}(f) \geqslant \sum _{i=1}^{n}\frac{\mathsf {Inf}_i(g)}{2} = \frac{\mathsf {Inf}(g) - \mathsf {Inf}_0(g)}{2} \geqslant \frac{\mathsf {Inf}(g) -1}{2}. \end{aligned}$$

Thus we can translate a lower bound on influences in the homogeneous case to the non-homogeneous case.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chakraborty, S., Karmalkar, S., Kundu, S., Lokam, S.V., Saurabh, N. (2018). Fourier Entropy-Influence Conjecture for Random Linear Threshold Functions. In: Bender, M., Farach-Colton, M., Mosteiro, M. (eds) LATIN 2018: Theoretical Informatics. LATIN 2018. Lecture Notes in Computer Science(), vol 10807. Springer, Cham. https://doi.org/10.1007/978-3-319-77404-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77404-6_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77403-9

  • Online ISBN: 978-3-319-77404-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics