Skip to main content

The Graph Tessellation Cover Number: Extremal Bounds, Efficient Algorithms and Hardness

  • Conference paper
  • First Online:
LATIN 2018: Theoretical Informatics (LATIN 2018)

Abstract

A tessellation of a graph is a partition of its vertices into vertex disjoint cliques. A tessellation cover of a graph is a set of tessellations that covers all of its edges. The t-tessellability problem aims to decide whether there is a tessellation cover of the graph with t tessellations. This problem is motivated by its applications to quantum walk models, in especial, the evolution operator of the staggered model is obtained from a graph tessellation cover. We establish upper bounds on the tessellation cover number given by the minimum between the chromatic index of the graph and the chromatic number of its clique graph and we show graph classes for which these bounds are tight. We prove \(\mathcal {NP}\)-completeness for t-tessellability if the instance is restricted to planar graphs, chordal (2, 1)-graphs, (1, 2)-graphs, diamond-free graphs with diameter five, or for any fixed t at least 3. On the other hand, we improve the complexity for 2-tessellability to a linear-time algorithm.

This work was partially supported by the Brazilian agencies CAPES, CNPq and FAPERJ.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Venegas-Andraca, S.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11(5), 1015–1106 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Portugal, R., Santos, R.A.M., Fernandes, T.D., Gonçalves, D.N.: The staggered quantum walk model. Quantum Inf. Process. 15(1), 85–101 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Portugal, R.: Staggered quantum walks on graphs. Phys. Rev. A 93, 062335 (2016)

    Article  MathSciNet  Google Scholar 

  4. Abreu, A., Cunha, L., Fernandes, T., de Figueiredo, C., Kowada, L., Marquezino, F., Posner, D., Portugal, R.: Bounds and complexity for the tessellation problem. Mat. Contemp. (2017, accepted)

    Google Scholar 

  5. Szwarcfiter, J.L.: A survey on clique graphs. In: Reed, B.A., Sales, C.L. (eds.) Recent Advances in Algorithms and Combinatorics. CBMOS, pp. 109–136. Springer, New York (2003)

    Google Scholar 

  6. West, D.: Introduction to Graph Theory. Pearson, London (2000)

    Google Scholar 

  7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman Co., San Francisco (1979)

    MATH  Google Scholar 

  8. Zatesko, L.M., Carmo, R., Guedes, A.L.P.: Edge-colouring of triangle-free graphs with no proper majors. In: II Encontro de Teoria da Computação, pp. 71–74 (2017)

    Google Scholar 

  9. Koreas, D.P.: The NP-completeness of chromatic index in triangle free graphs with maximum vertex of degree 3. Appl. Math. Comput. 83(1), 13–17 (1997)

    MathSciNet  MATH  Google Scholar 

  10. Peterson, D.: Gridline graphs: a review in two dimensions and an extension to higher dimensions. Discrete Appl. Math. 126(2–3), 223–239 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bonomo, F., Durán, G., Groshaus, M., Szwarcfiter, J.: On clique-perfect and K-perfect graphs. Ars Comb. 80, 97–112 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Grötschel, M., Lovász, L., Schrijver, A.: Geometric Algorithms and Combinatorial Optimization. Springer, Heidelberg (1988)

    Book  MATH  Google Scholar 

  13. Bodlaender, H., Kloks, T., Richard, B., van Leeuwen, J.: Approximation for lambda-colorings of graphs. Comput. J. 47, 1–12 (2004)

    Article  MATH  Google Scholar 

  14. Protti, F., Szwarcfiter, J.L.: Clique-inverse graphs of bipartite graphs. J. Comb. Math. Comb. Comput. 40, 193–203 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Roussopoulos, N.D.: A max \(\{\!{\rm m},\, {\rm n}\!\}\) algorithm for determining the graph H from its line graph G. Inf. Process. Lett. 2, 108–112 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  16. McConnell, R., Spinrad, J.: Linear-time modular decomposition and efficient transitive orientation of comparability graphs. In: Proceedings of the Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, vol. 2, pp. 536–545 (1994)

    Google Scholar 

  17. Sanders, D.P., Zhao, Y.: Planar graphs of maximum degree seven are class I. J. Comb. Theory B 83(2), 201–212 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cai, L., Ellis, J.A.: NP-completeness of edge-colouring some restricted graphs. Discrete Appl. Math. 30(1), 15–27 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Konno, N., Portugal, R., Sato, I., Segawa, E.: Partition-based discrete-time quantum walks

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celina de Figueiredo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abreu, A. et al. (2018). The Graph Tessellation Cover Number: Extremal Bounds, Efficient Algorithms and Hardness. In: Bender, M., Farach-Colton, M., Mosteiro, M. (eds) LATIN 2018: Theoretical Informatics. LATIN 2018. Lecture Notes in Computer Science(), vol 10807. Springer, Cham. https://doi.org/10.1007/978-3-319-77404-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77404-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77403-9

  • Online ISBN: 978-3-319-77404-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics