Skip to main content

Production of Bio-oils from Microbial Biomasses

  • Chapter
  • First Online:
Mycoremediation and Environmental Sustainability

Part of the book series: Fungal Biology ((FUNGBIO))

  • 1279 Accesses

Abstract

Several yeasts and fungal strains are known for their ability to accumulate high amounts of lipids inside the cells. The interest for their utilisation at industrial level as sources of fats and oils (named SCO, single cell oils) was raised by various advantages presented by these microbial biomasses in comparison to other lipid sources, such as vegetable or animal feedstocks; among them, the possibility to obtain compounds with peculiar composition, the capability to use wastes and coproduct of other processes for cell growth and conversion into lipids, no dependence from seasonal and climatic trends and no requirement for agricultural lands. Biochemical pathways of lipid metabolism are well characterised in both oleaginous and non-oleaginous microorganisms, and their knowledge allows to orient cell physiology and metabolic engineering strategies aimed to improve quantity and quality of SCO production. Some SCO industrial processes have been developed, in particular in the fields of nutrition, of nutraceuticals and of biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahamed A, Ahring BK (2011) Production of hydrocarbon compounds by endophytic fungi Gliocladium species grown on cellulose. Bioresour Technol 102:9718–9722

    Article  CAS  Google Scholar 

  • Anschau A, Xavier MCA, Hernalsteens S, Franco TT (2014) Effect of feeding strategies on lipid production by Lipomyces starkeyi. Bioresour Technol 157:214–222

    Article  CAS  PubMed  Google Scholar 

  • Athenstaedt K, Jolive P, Boulard C, Zivy M, Negroni L, Nicaud JM, Chardot T (2006) Lipid particle composition of the yeast Yarrowia lipolytica depends on the carbon source. Proteomics 6:1450–1459

    Article  CAS  PubMed  Google Scholar 

  • Bardi L, Crivelli C, Marzona M (1998) Esterase activity and release of ethyl esters of medium-chain fatty acids by Saccharomyces cerevisiae during anaerobic growth. Can J Microbiol 44:1171–1176

    Article  CAS  PubMed  Google Scholar 

  • Bardi L, Cocito C, Marzona M (1999) Saccharomyces cerevisiae cell fatty acid composition and release during fermentation without aeration and in the absence of exogenous lipids. Int J Food Microbiol 47:133–140

    Article  CAS  PubMed  Google Scholar 

  • Bellou S, Makria A, Sarris D, Michosa K, Rentoumia P, Celik A, Papanikolaou S, Aggelis G (2014) The olive mill wastewater as substrate for single cell oil production by Zygomycetes. J Biotechnol 170:50–59

    Article  CAS  PubMed  Google Scholar 

  • Bellou S, Triantaphyllidou IE, Mizerakis P, Aggelis G (2016) High lipid accumulation in Yarrowia lipolytica cultivated under double limitation of nitrogen and magnesium. J Biotechnol 234:116–126

    Article  CAS  PubMed  Google Scholar 

  • Belviso S, Bardi L, Biondi Bartolini A, Marzona M (2004) Lipid nutrition of Saccharomyces cerevisiae in winemaking. Can J Microbiol 50:657–667

    Article  Google Scholar 

  • Beopoulos A, Mrozova Z, Thevenieau F, Le Dall MT, Hapala I, Papanikolaou S, Chardot T, Nicaud JM (2008) Control of lipid accumulation in the yeast Yarrowia lipolytica. Appl Environ Microbiol 74(24):7779–7789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boulton CA, Ratledge C (1984) Cryptococcus terricolus, an oleaginous yeast re-appraised. Appl Microbiol Biotechnol 20(1):72–76

    Article  CAS  Google Scholar 

  • Brandenburg J, Blomqvist J, Pickova J, Bonturi N, Sandgren M, Passoth V (2016) Lipid production from hemicellulose with Lipomyces starkeyi in a pH regulated fed-batch cultivation. Yeast 2016, ISSY32 Special Issue, https://doi.org/10.1002/yea

  • Calvey CH, Su YK, Willis LB et al (2016) Nitrogen limitation, oxygen limitation, and lipid accumulation in Lipomyces starkeyi. Bioresour Technol 200:780–788

    Article  CAS  PubMed  Google Scholar 

  • Certik M, Horenitzky R (1999) Supercritical CO2 extraction of fungal oil containing y-linolenic acid. Biotechnol Tech 13:11–15

    Article  CAS  Google Scholar 

  • Certik M, Shimizu S (1999) Biosynthesis and regulation of microbial polyunsaturated fatty acid production. J Biosci Bioeng 87(1):1–14

    Article  CAS  PubMed  Google Scholar 

  • Certik M, Jana Megova J, Horenitzky R (1999) Effect of nitrogen sources on the activities of lipogenic enzymes in oleaginous fungus Cunninghamella echinulata. J Gen Appl Microbiol 45:289–293

    Article  CAS  PubMed  Google Scholar 

  • Chatzifragkou A, Makri A, Belka A, Bellou S, Mavrou M, Mastoridou M, Mystrioti P, Onjaro G, Aggelis G, Papanikolaou S (2011) Biotechnological conversions of biodiesel derived waste glycerol by yeast and fungal species. Energy 36:1097–1108

    Article  CAS  Google Scholar 

  • Chuang LT, Chen DC, Nicaud JM, Madzak C, Chen YH, Huang YS (2010) Co-expression of heterologous desaturase genes in Yarrowia lipolytica. New Biotechnol 27:277–282

    Article  CAS  Google Scholar 

  • Daum G, Lee ND, Bard M, Dickson R (1998) Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast 14:1471–1510

    Article  CAS  Google Scholar 

  • Dulermo T, Nicaud J-M (2011) Involvement of G3P shuttle and β-oxidation pathway into the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica. Metab Eng 13:482–491

    Article  CAS  PubMed  Google Scholar 

  • Easterling ER, French WT, Hernandez R, Licha M (2009) The effect of glycerol as a sole and secondary substrate on the growth and fatty acid composition of Rhodotorula glutinis. Bioresour Technol 100:356–361

    Article  CAS  PubMed  Google Scholar 

  • Fakas S, Galiotou-Panayotou M, Papanikolaou S, Komaitis M, Aggelis G (2007) Compositional shifts in lipid fractions during lipid turnover in Cunninghamella echinulata. Enzym Microb Technol 40:1321–1327

    Article  CAS  Google Scholar 

  • Fakas S, Papanikolaou S, Batsos A, Galiotou-Panayotou M, Mallouchos A, Aggelis G (2009) Evaluating renewable carbon sources as substrates for single cell oil production by Cunninghamella echinulata and Mortierella isabellina. Biomass Bioenergy 33:573–580

    Article  CAS  Google Scholar 

  • Forfang K, Zimmermann B, Kosa G, Kohler A, Shapaval V (2017) FTIR Spectroscopy for evaluation and monitoring of lipid extraction efficiency for oleaginous fungi. PLOS ONE https://doi.org/10.1371/journal.pone.0170611 January 24, 2017

    Article  PubMed  PubMed Central  Google Scholar 

  • Henry SA (1982) Membrane lipids of yeast: biochemical and genetic study. In: Strathern JN, Jones EW, Broach JR (eds) Molecular biology of the yeast Saccharomyces cerevisiae: metabolism and gene expression. Cold Spring Harbor Laboratory, New York, pp 101–158

    Google Scholar 

  • Holdsworth JE, Veenhuis M, Ratledge C (1988) Enzyme activities in oleaginous yeasts accumulating and utilizing exogenous or endogenous lipids. J Gen Microbiol 134:2907–2915

    PubMed  CAS  Google Scholar 

  • Hui L, Wan C, Hai-tao D, Xue-jiao C, Qi-fa Z, Yu-hua Z (2010) Direct microbial conversion of wheat straw into lipid by a cellulolytic fungus of Aspergillus oryzae A-4 in solid-state fermentation. Bioresour Technol 101:7556–7562

    Article  CAS  Google Scholar 

  • Jacklin A, Ratledge C, Wynn JP (2000) Lipid-to-gibberellin metabolic switching in Fusarium moniliforme via the action of sesamol. Biotechnol Lett 22(24):1983–1986

    Article  CAS  Google Scholar 

  • Kamisaka Y, Noda N, Sakai T, Kawasaki K (1999) Lipid bodies and lipid body formation in an oleaginous fungus, Mortierella ramanniana var. angulispora. Biochim Biophys Acta 1438(2):185–198

    Article  CAS  PubMed  Google Scholar 

  • Koritala S, Hesseltine CW, Pryde EH, Mounts TL (1987) Biochemical modification of fats by microorganisms: a preliminary study. J Am Oil Chem Soc 64:509–513

    Article  CAS  Google Scholar 

  • Kuchler K, Daum G, Paltauf F (1986) Subcellular and submitochondrial localization of phospholipid-synthesizing enzymes in Saccharomyces cerevisiae. J Bacteriol 165(3):901–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laoteng K, Mannontarat R, Tanticharoen M, Cheevadhanarak S (2000) Δ6-desaturase of Mucor rouxii with high similarity to plant Δ6-desaturase and its heterologous expression in Saccharomyces cerevisiae. Biochem Biophys Res Commun 279(1):17–22

    Article  CAS  PubMed  Google Scholar 

  • Lee SK, Chou H, HamTS LTS, Keasling JD (2008) Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr Opin Biotechnol 19:556–563

    Article  CAS  PubMed  Google Scholar 

  • Li YH, Liu B, Zhao ZB, Bai FW (2006) Optimized culture medium and fermentation conditions for lipid production by Rhodosporidium toruloides. Chin J Biotechnol 22(4):650–656

    Article  CAS  Google Scholar 

  • Meesters PA, Eggink G (1996) Isolation and characterization of a delta-9 fatty acid desaturase gene from the oleaginous yeast Cryptococcus curvatus CBS 570. Yeast 12:723–730

    Article  CAS  PubMed  Google Scholar 

  • Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M (2009) Biodiesel production from oleaginous microorganisms. Renew Energy 34(1):1–5

    Article  CAS  Google Scholar 

  • Mlickova K, Luo Y, d’Andrea S, Pec P et al (2004a) Acyl-CoA oxidase, a key step for lipid accumulation in the yeast Yarrowia lipolytica. J Mol Catal B Enzym 28:81–85

    Article  CAS  Google Scholar 

  • Mlickova K, Roux E, Athenstaedt K, d’Andrea S, Daum G, Chardot T, Nicaud JM (2004b) Lipid accumulation, lipid body formation, and acyl-coenzyme A oxidases of the yeast Yarrowia lipolytica. Appl Environ Microbiol 70:3918–3924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moustogianni A, Bellou S, Triantaphyllidou IE, Aggelis G (2015) Feasibility of raw glycerol conversion into single cell oil by Zygomycetes under non-aseptic conditions. Biotechnol Bioeng 112(4):827–831

    Article  CAS  PubMed  Google Scholar 

  • Nakajima T, Izu S (1993) Microbial production and purification of w-6 polyunsaturated fatty acids. In: Sinclair A, Gibson R (eds) Essential fatty acids and eicosanoids. AOCS, Champaign, pp 57–64

    Google Scholar 

  • Ozcan S, Johnston M (1999) Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev 63(3):554–569

    PubMed  PubMed Central  CAS  Google Scholar 

  • Papanikolaou S, Aggelis G (2003) Selective uptake of fatty acids by the yeast Yarrowia lipolytica. Eur J Lipid Sci Technol 105:651–655

    Article  CAS  Google Scholar 

  • Papanikolaou S, Aggelis G (2011a) Lipids of oleaginous yeasts. Part I: biochemistry of single cell oil production. Eur J Lipid Sci Technol 113:1031–1051

    Article  CAS  Google Scholar 

  • Papanikolaou S, Aggelis G (2011b) Lipids of oleaginous yeasts. Part II: technology and potential applications. Eur J Lipid Sci Technol 113:1052–1073

    Article  CAS  Google Scholar 

  • Papanikolaou S, Chevalot I, Komaitis M, Marc I, Aggelis G (2002) Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Appl Microbiol Biotechnol 58:308–312

    Article  CAS  PubMed  Google Scholar 

  • Papanikolaou S, Sarantou S, Komaitis M, Aggelis G (2004) Repression of reserve lipid turnover in Cunninghamella echinulata and Mortierella isabellina cultivated in multiple limited media. J Appl Microbiol 97:867–874

    Article  CAS  PubMed  Google Scholar 

  • Passoth V (2014) Molecular mechanisms in yeast carbon metabolism: bioethanol and other biofuels. In: Piškur J, Compagno C (eds) Molecular mechanisms in yeast carbon metabolism. Springer-Verlag, Berlin

    Google Scholar 

  • Peralta-Yahya P, Keasling JD (2010) Advanced biofuel production in microbes. Biotechnol J 5:147–162

    Article  CAS  PubMed  Google Scholar 

  • Ratledge C (1976) Microbial production of oils and fats. In: Birch GG, Parker KJ, Worgan JT (eds) Food from Waste. Applied Science Publishers, London

    Google Scholar 

  • Ratledge C (2013) Microbial oils: an introductory overview of current status and future prospects. OCL 20(6):D602

    Article  Google Scholar 

  • Ratledge C, Evans CT (1989) Lipids and their metabolism. In: Rose AH, Harrison JS (eds) The yeasts: metabolism and physiology of yeasts. Academic Press Limited, London, pp 369–434

    Google Scholar 

  • Ratledge C, Wynn JP (2002) The biochemistry and molecular biology of lipid accumulation in oleaginous microorganisms. Adv Appl Microbiol 51:1–51

    Google Scholar 

  • Rolph CE, Moreton RS, Small IS, Harwood JL (1986) Acyl lipid metabolism and fatty acid desaturation in the yeast Rhodotorula gracilis (CBS 3043). Biochem Soc Trans 14:712

    Article  CAS  Google Scholar 

  • Shanklin J, Whittle E, Fox BG (1994) Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenase. Biochemistry 33(43):12787–12794

    Article  CAS  PubMed  Google Scholar 

  • Shi S, Valle-Rodríguez JO, Siewers V, Nielsen J (2011) Prospects for microbial biodiesel production. Biotechnol J 6:277–285

    Article  CAS  PubMed  Google Scholar 

  • Strobel GA (2014) Methods of discovery and techniques to study endophytic fungi producing fuel-related hydrocarbons. Nat Prod Rep 31:259

    Article  CAS  PubMed  Google Scholar 

  • Strobel G, Knighton B, Kluck K, Ren Y, Livinghouse T, Griffin M, Spakowicz D, Sears J (2008) The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072). Microbiologica 154:3319–3328

    CAS  Google Scholar 

  • Stukey JE, McDonough VM, Martin CE (1990) The OLE1 gene of Saccharomyces cerevisiae encodes the delta 9 fatty acid desaturase and can be functionally replaced by the rat stearoyl-CoA desaturase gene. J Biol Chem 265(33):20144–20149

    PubMed  CAS  Google Scholar 

  • Tai M, Stephanopoulos G (2013) Engineering the push and pull of lipid biosynthesis in oleaginous yeast Yarrowia lipolytica for biofuel production. Metab Eng 15:1–9

    Article  CAS  PubMed  Google Scholar 

  • Taylor FR, Parks LW (1978) Metabolic interconversion of free sterols and steryl esters in Saccharomyces cerevisiae. J Bacteriol 136(2):531–537

    PubMed  PubMed Central  CAS  Google Scholar 

  • Tchakouteu SS, Chatzifragkou A, Kalantzi O, Apostolis A, Koutinas AA, Aggelis G, Papanikolaou S (2015a) Oleaginous yeast Cryptococcus curvatus exhibits interplay between biosynthesis of intracellular sugars and lipids. Eur J Lipid Sci Technol 117:657–672

    Article  CAS  Google Scholar 

  • Tchakouteu SS, Kalantzi O, Gardeli C, Koutinas AA, Aggelis G, Papanikolaou S (2015b) Lipid production by yeasts growing on biodiesel-derived crude glycerol: strain selection and impact of substrate concentration on the fermentation efficiency. J Appl Microbiol 118(4):911–927

    Article  CAS  PubMed  Google Scholar 

  • Thevenieau F, Nicaud J-M (2013) Microorganisms as sources of oils. OCL 20(6):D603

    Article  Google Scholar 

  • Wolf J, Passarge J, Somsen OJ, Snoep JL, Heinrich R, Westerhoff HV (2000) Transduction of intracellular and intercellular dynamics in yeast glycolytic oscillations. Biophys J 78:1145–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu S, Hu C, Jin C, Zhao X, Zhao ZB (2010) Phosphate limitation mediated lipid production by Rhodosporidium toruloides. Bioresour Technol 101:6124–6129

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Zhao X, Shen H, Wang Q, Zhao ZB (2011) Microbial lipid production by Rhodosporidium toruloides under sulfate-limited conditions. Bioresour Technol 102:1803–1807

    Article  CAS  PubMed  Google Scholar 

  • Wynn JP, Ratledge C (2000) Evidence that the rate-limiting step for the biosynthesis of arachidonic acid in Mortierella alpina is at the level of the 18:3 to 20:3 elongase. Microbiology 146:2325–2331

    Article  CAS  PubMed  Google Scholar 

  • Wynn JP, Hamidt AA, Ratledge C (1999) The role of malic enzyme in the regulation of lipid accumulation in filamentous fungi. Microbiology 145:1911–1917

    Article  CAS  PubMed  Google Scholar 

  • Wynn JP, Ratledge C, Hamid AA, Li Y (2001) Biochemical events leading to the diversion of carbon into storage lipids in the oleaginous fungi Mucor circinelloides and Mortierella alpina. Microbiology 147(10):2857–2864

    Article  CAS  PubMed  Google Scholar 

  • Yousuf A, Sannino F, Addorisio V, Pirozzi D (2010) Microbial conversion of olive oil mill wastewaters into lipids suitable for biodiesel production. J Agric Food Chem 58:8630–8635

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

All the figures and tables were edited by Massimo Torta. The picture in Fig. 3.5 was taken by Fulvia Rosso.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Bardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bardi, L. (2018). Production of Bio-oils from Microbial Biomasses. In: Prasad, R. (eds) Mycoremediation and Environmental Sustainability. Fungal Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-77386-5_3

Download citation

Publish with us

Policies and ethics