Skip to main content

Coarse-Grained Molecular Dynamics of the Natively-Unfolded Domain of the NPC

  • Chapter
  • First Online:
Nuclear-Cytoplasmic Transport

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 33))

  • 608 Accesses

Abstract

Transport through the nuclear pore complex (NPC) is mediated through natively unfolded FG-Nups. In this study, we address several questions regarding the role of FG-Nups by means of a one-bead-per-amino acid (1 BPA) molecular dynamics model. We show that inside the NPC the FG-Nups collectively form a high-density, doughnut-like distribution, which is rich in FG repeats. This specific doughnut shape is encoded in the amino acid sequence of the FG-Nups. We compare our simulations with permeability experiments and find a strong correlation between passive transport through the NPC and the average density of the FG-Nups at the central core region of the pore. Furthermore, we use umbrella sampling to obtain the potential of mean force (PMF) distribution for model kap–cargo complexes along the central axis of the pore. We find that the energy barrier for passive transport is size dependent, with inert cargo molecules larger than 5 nm in diameter effectively being excluded from transport. PMF curves of the Kap–cargo complexes show that the presence of several hydrophobic binding spots on the surface of large cargo complexes can lower the energy barrier below kBT for an optimal spacing of 1.4 nm, which is close to reported experimental values. Finally, we capture our simulations in a simple transport model which describes the energy barrier of the NPC as a function of diameter and hydrophobicity of the Kap–cargo complex, highlighting the sensitive balance between cargo being trapped, expelled, and transported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraham DJ, Leo AJ (1987) Extension of the fragment method to calculate amino acid zwitterion and side chain partition coefficients. Proteins Struct Funct Bioinf 2(2):130–152

    Article  CAS  Google Scholar 

  • Ader C, Frey S, Maas W, Schmidt H, Gorlich D, Baldus M (2010) Amyloid-like interactions within nucleoporin FG hydrogels. Proc Natl Acad Sci 107(14):6281–6285

    Article  PubMed  Google Scholar 

  • Alber F, Dokudovskaya S, Veenhoff L, Zhang W, Kipper J, Devos D, Suprapto A, Karni-Schmidt O, Williams R, Chait B et al (2007a) The molecular architecture of the nuclear pore complex. Nature 450(7170):695–701

    Article  CAS  PubMed  Google Scholar 

  • Alber F, Dokudovskaya S, Veenhoff L, Zhang W, Kipper J, Devos D, Suprapto A, Karni-Schmidt O, Williams R, Chait B et al (2007b) Determining the architectures of macromolecular assemblies. Nature 450(7170):683–694

    Article  CAS  PubMed  Google Scholar 

  • Atkinson CE, Mattheyses AL, Kampmann M, Simon SM (2013) Conserved spatial organization of FG domains in the nuclear pore complex. Biophys J 104(1):37–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beck M, Lučić V, Förster F, Baumeister W, Medalia O (2007) Snapshots of nuclear pore complexes in action captured by cryo-electron tomography. Nature 449(7162):611–615

    Article  CAS  PubMed  Google Scholar 

  • Colwell LJ, Brenner MP, Ribbeck K (2010) Charge as a selection criterion for translocation through the nuclear pore complex. PLoS Comput Biol 6(4):e1000747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denning D, Patel S, Uversky V, Fink A, Rexach M (2003) Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc Natl Acad Sci 100(5):2450–2455

    Article  CAS  PubMed  Google Scholar 

  • Egorov S (2012) Insertion of nanoparticles into polymer brush under variable solvent conditions. J Chem Phys 137(13):134905

    Article  CAS  PubMed  Google Scholar 

  • Eibauer M, Pellanda M, Turgay Y, Dubrovsky A, Wild A, Medalia O (2015) Structure and gating of the nuclear pore complex. Nat Commun 6:7532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eisenberg D (1984) Three-dimensional structure of membrane and surface proteins. Annu Rev Biochem 53(1):595–623

    Article  CAS  PubMed  Google Scholar 

  • Ermilov V, Lazutin A, Halperin A (2010) Colloids in brushes: the insertion free energy via Monte Carlo simulation with umbrella sampling. Macromolecules 43(7):3511–3520

    Article  CAS  Google Scholar 

  • Frey S, Görlich D (2007) A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell 130(3):512–523

    Article  CAS  PubMed  Google Scholar 

  • Frey S, Richter R, Görlich D (2006) FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science 314(5800):815–817

    Article  CAS  PubMed  Google Scholar 

  • Ghavami A, van der Giessen E, Onck PR (2012) Coarse-grained potentials for local interactions in unfolded proteins. J Chem Theory Comput 9(1):432–440

    Article  CAS  PubMed  Google Scholar 

  • Ghavami A, Veenhoff LM, van der Giessen E, Onck PR (2014) Probing the disordered domain of the nuclear pore complex through coarse-grained molecular dynamics simulations. Biophys J 107(6):1393–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghavami A, van der Giessen E, Onck PR (2016) Energetics of transport through the nuclear pore complex. PLoS One 11(2):e0148876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halperin A, Kroger M, Zhulina EB (2011) Colloid-brush interactions: the effect of solvent quality. Macromolecules 44(9):3622–3638

    Article  CAS  Google Scholar 

  • Hingerty BE, Ritchie RH, Ferrell TL, Turner JE (1985) Dielectric effects in biopolymers: the theory of ionic saturation revisited. Biopolymers 24(3):427–439

    Article  CAS  Google Scholar 

  • Isgro T, Schulten K (2007) Cse1p-binding dynamics reveal a binding pattern for FG-repeat nucleoporins on transport receptors. Structure 15(8):977–991

    Article  CAS  PubMed  Google Scholar 

  • Kapinos LE, Schoch RL, Wagner RS, Schleicher KD, Lim RY (2014) Karyopherin-centric control of nuclear pores based on molecular occupancy and kinetic analysis of multivalent binding with FG nucleoporins. Biophys J 106(8):1751–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karshikoff A (2006) Non-covalent interactions in proteins. World Scientific Publishing, Singapore

    Book  Google Scholar 

  • Keminer O, Peters R (1999) Permeability of single nuclear pores. Biophys J 77(1):217–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kralt A, Carretta M, Mari M, Reggiori F, Steen A, Poolman B, Veenhoff LM (2015) Intrinsically disordered linker and plasma membrane-binding motif sort Ist2 and Ssy1 to junctions. Traffic 16(2):135–147

    Article  CAS  PubMed  Google Scholar 

  • Krishnan V, Lau E, Yamada J, Denning D, Patel S, Colvin M, Rexach M (2008) Intramolecular cohesion of coils mediated by phenylalanine–glycine motifs in the natively unfolded domain of a nucleoporin. PLoS Comput Biol 4(8):e1000145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim R, Huang N, Koser J, Deng J, Lau K, Schwarz-Herion K, Fahrenkrog B, Aebi U (2006) Flexible phenylalanine-glycine nucleoporins as entropic barriers to nucleocytoplasmic transport. Proc Natl Acad Sci 103(25):9512–9517

    Article  CAS  PubMed  Google Scholar 

  • Lim R, Fahrenkrog B, Koser J, Schwarz-Herion K, Deng J, Aebi U (2007) Nanomechanical basis of selective gating by the nuclear pore complex. Science 318(5850):640–643

    Article  CAS  PubMed  Google Scholar 

  • Lim RY, Huang B, Kapinos LE (2015) How to operate a nuclear pore complex by Kap-centric control. Nucleus 6(5):366–372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Goryaynov A, Yang W (2016) Super-resolution 3D tomography of interactions and competition in the nuclear pore complex. Nat Struct Mol Biol 23(3):239–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merlitz H, Wu CX, Sommer JU (2012) Inclusion free energy of nanoparticles in polymer brushes. Macromolecules 45(20):8494–8501

    Article  CAS  Google Scholar 

  • Miao L, Schulten K (2009) Transport-related structures and processes of the nuclear pore complex studied through molecular dynamics. Structure 17(3):449–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao L, Schulten K (2010) Probing a structural model of the nuclear pore complex channel through molecular dynamics. Biophys J 98(8):1658–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milchev A, Dimitrov DI, Binder K (2008) Excess free energy of nanoparticles in a polymer brush. Polymer 49(17):3611–3618

    Article  CAS  Google Scholar 

  • Mincer J, Simon S (2011) Simulations of nuclear pore transport yield mechanistic insights and quantitative predictions. Proc Natl Acad Sci USA 108(31):E351–E358

    Article  PubMed  Google Scholar 

  • Mohr D, Frey S, Fischer T, Güttler T, Görlich D (2009) Characterisation of the passive permeability barrier of nuclear pore complexes. EMBO J 28(17):2541–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moussavi-Baygi R, Jamali Y, Karimi R, Mofrad M (2011a) Biophysical coarse-grained modeling provides insights into transport through the nuclear pore complex. Biophys J 100(6):1410–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moussavi-Baygi R, Jamali Y, Karimi R, Mofrad M (2011b) Brownian dynamics simulation of nucleocytoplasmic transport: a coarse-grained model for the functional state of the nuclear pore complex. PLoS Comput Biol 7(6):e1002049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Musser SM, Grünwald D (2016) Deciphering the structure and function of nuclear pores using single-molecule fluorescence approaches. J Mol Biol 428(10):2091–2119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naim B, Zbaida D, Dagan S, Kapon R, Reich Z (2009) Cargo surface hydrophobicity is sufficient to overcome the nuclear pore complex selectivity barrier. EMBO J 28(18):2697–2705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oberleithner H, Schuricht B, Wünsch S, Schneider S, Püschel B (1993) Role of H+ ions in volume and voltage of epithelial cell nuclei. Pflügers Archive 423(1–2):88–96

    Article  CAS  Google Scholar 

  • Paine PL, Moore LC, Horowitz SB (1975) Nuclear envelope permeability. Nature 254(5496):109

    Article  CAS  PubMed  Google Scholar 

  • Patel S, Belmont B, Sante J, Rexach M (2007) Natively unfolded nucleoporins gate protein diffusion across the nuclear pore complex. Cell 129(1):83–96

    Article  CAS  PubMed  Google Scholar 

  • Peters R (2005) Translocation through the nuclear pore complex: selectivity and speed by reduction‐of‐dimensionality. Traffic 6(5):421–427

    Article  CAS  PubMed  Google Scholar 

  • Peters R (2009) Translocation through the nuclear pore: Kaps pave the way. BioEssays 31:466–477

    Article  CAS  PubMed  Google Scholar 

  • Popken P, Ghavami A, Onck PR, Poolman B, Veenhoff LM (2015) Size-dependent leak of soluble and membrane proteins through the yeast nuclear pore complex. Mol Biol Cell 26(7):1386–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roseman MA (1988) Hydrophilicity of polar amino acid side-chains is markedly reduced by flanking peptide bonds. J Mol Biol 200(3):513–522

    Article  CAS  PubMed  Google Scholar 

  • Rout M, Aitchison J, Suprapto A, Hjertaas K, Zhao Y, Chait B (2000) The yeast nuclear pore complex: composition, architecture, and transport mechanism. J Cell Biol 148(4):635–652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rout M, Aitchison J, Magnasco M, Chait B (2003) Virtual gating and nuclear transport: the hole picture. Trends Cell Biol 13(12):622–628

    Article  CAS  PubMed  Google Scholar 

  • Sakiyama Y, Mazur A, Kapinos LE, Lim RY (2016) Spatiotemporal dynamics of the nuclear pore complex transport barrier resolved by high-speed atomic force microscopy. Nat Nanotechnol 11(8):719–723

    Article  CAS  PubMed  Google Scholar 

  • Tagliazucchi M, Peleg O, Kröger M, Rabin Y, Szleifer I (2013) Effect of charge, hydrophobicity, and sequence of nucleoporins on the translocation of model particles through the nuclear pore complex. Proc Natl Acad Sci 110(9):3363–3368

    Article  PubMed  Google Scholar 

  • Timney BL, Raveh B, Mironska R, Trivedi JM, Kim SJ, Russel D, Wente SR, Sali A, Rout MP (2016) Simple rules for passive diffusion through the nuclear pore complex. J Cell Biol 215:57–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torrie GM, Valleau JP (1977) Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J Comput Phys 23(2):187–199

    Article  Google Scholar 

  • Vovk A, Gu C, Opferman MG, Kapinos LE, Lim RY, Coalson RD, Jasnow D, Zilman A (2016) Simple biophysics underpins collective conformations of the intrinsically disordered proteins of the nuclear pore complex. eLife 5:e10785

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamada J, Phillips J, Patel S, Goldfien G, Calestagne-Morelli A, Huang H, Reza R, Acheson J, Krishnan V, Newsam S et al (2010) A bimodal distribution of two distinct categories of intrinsically disordered structures with separate functions in FG nucleoporins. Mol Cell Proteomics 9:2205–2224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Q, Rout MP, Akey CW (1998) Three-dimensional architecture of the isolated yeast nuclear pore complex: functional and evolutionary implications. Mol Cell 1(2):223–234

    Article  CAS  PubMed  Google Scholar 

  • Yang W, Gelles J, Musser S (2004) Imaging of single-molecule translocation through nuclear pore complexes. Proc Natl Acad Sci 101(35):12887–12892

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Onck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghavami, A., van der Giessen, E., Onck, P.R., Veenhoff, L.M. (2018). Coarse-Grained Molecular Dynamics of the Natively-Unfolded Domain of the NPC. In: Yang, W. (eds) Nuclear-Cytoplasmic Transport. Nucleic Acids and Molecular Biology, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-77309-4_9

Download citation

Publish with us

Policies and ethics