Skip to main content

Dynamic Structures of the Nuclear Pore Complex and Their Roles in Nucleocytoplasmic Transport

  • Chapter
  • First Online:
Nuclear-Cytoplasmic Transport

Part of the book series: Nucleic Acids and Molecular Biology ((NUCLEIC,volume 33))

  • 617 Accesses

Abstract

The structure of the NPC has been studied for over 60 years. Although we are beginning to understand its structural framework, we do not know how the structure acts as a selective gate and how it facilitates transport in either direction. This may be because the very components that directly facilitate gating are varied, dynamic and possibly amorphous. Here, what we know about the structural organisation of the peripheral and dynamic components, such as the cytoplasmic filaments, the NPC basket and the structures within and protruding from the central channel, is reviewed in relation to their roles in nuclear transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akey CW, Goldfarb DS (1989) Protein import through the nuclear pore complex is a multistep process. J Cell Biol 109:971–982

    Article  CAS  PubMed  Google Scholar 

  • Afzelius BA (1955) The ultrastructure of the nuclear membrane of the sea urchin oocyte as studied with the electron microscope. Exp Cell Res 8:147–158

    Article  CAS  PubMed  Google Scholar 

  • Ben-Efraim I, Frosst PD, Gerace L (2009) Karyopherin binding interactions and nuclear import mechanism of nuclear pore complex protein Tpr. BMC Cell Biol. 10:74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ball JR, Dimaano C, Bilak A, Kurchan E, Zundel MT, Ullman KS (2007) Sequence preference in RNA recognition by the nucleoporin Nup153. J Biol Chem 282:8734–8740

    Article  CAS  PubMed  Google Scholar 

  • Beck M, Förster F, Ecke M, Plitzko JM, Melchior F, Gerisch G, Baumeister W, Medalia O (2004) Nuclear pore complex structure and dynamics revealed by cryoelectron tomography. Science 306:1387–1390

    Article  CAS  PubMed  Google Scholar 

  • Beck M, Hurt E (2017) The nuclear pore complex: understanding its function through structural insight. Nat Rev Mol Cell Biol 18:73–89

    Article  CAS  PubMed  Google Scholar 

  • Bernad R, van der Velde H, Fornerod M, Pickersgill H (2004) Nup358/RanBP2 attaches to the nuclear pore complex via association with Nup88 and Nup214/CAN and plays a supporting role in CRM1-mediated nuclear protein export. Mol Cell Biol 24:2373–2384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bui KH, von Appen A, DiGuilio AL, Ori A, Sparks L, Mackmull MT, Bock T, Hagen W, Andrés-Pons A, Glavy JS, Beck M (2013) Integrated structural analysis of the human nuclear pore complex scaffold. Cell 155:1233–1243

    Article  CAS  PubMed  Google Scholar 

  • Byrd DA, Sweet DJ, Panté N, Konstantinov KN, Guan T, Saphire AC, Mitchell PJ, Cooper CS, Aebi U, Gerace L (1994) Tpr, a large coiled coil protein whose amino terminus is involved in activation of oncogenic kinases, is localized to the cytoplasmic surface of the nuclear pore complex. J Cell Biol 127:1515–1526

    Article  CAS  PubMed  Google Scholar 

  • Callan HG, Randall JT, Tomlin SG (1949) An electron microscope study of the nuclear membrane. Nature 163:280

    Article  CAS  PubMed  Google Scholar 

  • Callan HG, Tomlin SG (1950) Experimental studies on amphibian oocyte nuclei. I. Investigation of the structure of the nuclear membrane by means of the electron microscope. Proc R Soc Lond B Biol Sci 137:367–378

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty P, Wang Y, Wei JH, van Deursen J, Yu H, Malureanu L, Dasso M, Forbes DJ, Levy DE, Seemann J, Fontoura BM (2008) Nucleoporin levels regulate cell cycle progression and phase-specific gene expression. Dev Cell 15:657–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatel G, Desai SH, Mattheyses AL, Powers MA, Fahrenkrog B (2012) Domain topology of nucleoporin Nup98 within the nuclear pore complex. J Struct Biol 177:81–89

    Article  CAS  PubMed  Google Scholar 

  • Coyle JH, Bor YC, Rekosh D, Hammarskjold ML (2011) The Tpr protein regulates export of mRNAs with retained introns that traffic through the Nxf1 pathway. RNA 17:1344–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordes VC, Reidenbach S, Rackwitz HR, Franke WW (1997) Identification of protein p270/Tpr as a constitutive component of the nuclear pore complex-attached intranuclear filaments. J Cell Biol 136:515–529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daigle N, Beaudouin J, Hartnell L, Imreh G, Hallberg E, Lippincott-Schwartz J, Ellenberg J (2001) Nuclear pore complexes form immobile networks and have a very low turnover in live mammalian cells. J Cell Biol 154:71–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Angelo MA, Raices M, Panowski SH, Hetzer MW (2009) Age-dependent deterioration of nuclear pore complexes causes a loss of nuclear integrity in postmitotic cells. Cell 136:284–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delphin C, Guan T, Melchior F, Gerace L (1997) RanGTP targets p97 to RanBP2, a filamentous protein localized at the cytoplasmic periphery of the nuclear pore complex. Mol Biol Cell 8:2379–2390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denning DP, Patel SS, Uversky V, Fink AL, Rexach M (2003) Disorder in the nuclear pore complex: the FG repeat regions of nucleoporins are natively unfolded. Proc Natl Acad Sci U S A 100:2450–2455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dimaano C, Ball JR, Prunuske AJ, Ullman KS (2001) RNA association defines a functionally conserved domain in the nuclear pore protein Nup153. J Biol Chem 276:45349–45357

    Article  CAS  PubMed  Google Scholar 

  • Doucet CM, Esmery N, de Saint-Jean M, Antonny B (2015) Membrane curvature sensing by amphipathic helices is modulated by the surrounding protein backbone. PLoS One 10:e0137965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duheron V, Chatel G, Sauder U, Oliveri V, Fahrenkrog B (2014) Structural characterization of altered nucleoporin Nup153 expression in human cells by thin-section electron microscopy. Nucleus 5:601–612

    Article  PubMed  PubMed Central  Google Scholar 

  • Eisele NB, Labokha AA, Frey S, Görlich D, Richter RP (2013) Cohesiveness tunes assembly and morphology of FG nucleoporin domain meshworks – implications for nuclear pore permeability. Biophys J 105:1860–1870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahrenkrog B, Maco B, Fager AM, Köser J, Sauder U, Ullman KS, Aebi U (2002) Domain-specific antibodies reveal multiple-site topology of Nup153 within the nuclear pore complex. J Struct Biol 140:254–267

    Article  CAS  PubMed  Google Scholar 

  • Feldherr CM (1965) The effect of the electron-opaque pore material on exchanges through the nuclear annuli. J Cell Biol 25:43–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferreira PA, Nakayama TA, Pak WL, Travis GH (1996) Cyclophilin-related protein RanBP2 acts as chaperone for red/green opsin. Nature 383:637–640

    Article  CAS  PubMed  Google Scholar 

  • Fiserova J, Kiseleva E, Goldberg MW (2009) Nuclear envelope and nuclear pore complex structure and organization in tobacco BY-2 cells. Plant J 59:243–255

    Article  CAS  PubMed  Google Scholar 

  • Fiserova J, Richards SA, Wente SR, Goldberg MW (2010) Facilitated transport and diffusion take distinct spatial routes through the nuclear pore complex. J Cell Sci 123:2773–2780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiserova J, Spink M, Richards SA, Saunter C, Goldberg MW (2014) Entry into the nuclear pore complex is controlled by a cytoplasmic exclusion zone containing dynamic GLFG-repeat nucleoporin domains. J Cell Sci 127:124–136

    Article  CAS  PubMed  Google Scholar 

  • Frosst P, Guan T, Subauste C, Hahn K, Gerace L (2002) Tpr is localized within the nuclear basket of the pore complex and has a role in nuclear protein export. J Cell Biol 156:617–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Galy V, Gadal O, Fromont-Racine M, Romano A, Jacquier A, Nehrbass U (2004) Nuclear retention of unspliced mRNAs in yeast is mediated by perinuclear Mlp1. Cell 116:63–73

    Article  CAS  PubMed  Google Scholar 

  • Goldberg MW, Allen TD (1992) High resolution scanning electron microscopy of the nuclear envelope: demonstration of a new, regular, fibrous lattice attached to the baskets of the nucleoplasmic face of the nuclear pores. J Cell Biol 119:1429–1440

    Article  CAS  PubMed  Google Scholar 

  • Goldberg MW, Allen TD (1993) The nuclear pore complex: three-dimensional surface structure revealed by field emission, in-lens scanning electron microscopy, with underlying structure uncovered by proteolysis. J Cell Sci 106:261–274

    PubMed  CAS  Google Scholar 

  • Goldberg MW, Allen TD (1996) The nuclear pore complex and lamina: three-dimensional structures and interactions determined by field emission in-lens scanning electron microscopy. J Mol Biol 257:848–865

    Article  CAS  PubMed  Google Scholar 

  • Goldberg MW, Solovei II, Allen TD (1997) Nuclear pore complex structure in birds. J Struct Biol 119:284–294

    Article  PubMed  Google Scholar 

  • Goldberg MW, Rutherford SA, Hughes M, Cotter LA, Bagley S, Kiseleva E, Allen TD, Clarke PR (2000) Ran alters nuclear pore complex conformation. J Mol Biol 300:519–529

    Article  CAS  PubMed  Google Scholar 

  • Goldberg MW, Huttenlauch I, Hutchison CJ, Stick R (2008) Filaments made from A- and B-type lamins differ in structure and organization. J Cell Sci 121:215–225

    Article  CAS  PubMed  Google Scholar 

  • Griffis ER, Altan N, Lippincott-Schwartz J, Powers MA (2002) Nup98 is a mobile nucleoporin with transcription-dependent dynamics. Mol Biol Cell 13:1282–1297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamada M, Haeger A, Jeganathan KB, van Ree JH, Malureanu L, Wälde S, Joseph J, Kehlenbach RH, van Deursen JM (2011) Ran-dependent docking of importin-beta to RanBP2/Nup358 filaments is essential for protein import and cell viability. J Cell Biol 194:597–612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hase ME, Kuznetsov NV, Cordes VC (2001) Amino acid substitutions of coiled-coil protein Tpr abrogate anchorage to the nuclear pore complex but not parallel, in-register homodimerization. Mol Biol Cell 12:2433–2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hase ME, Cordes VC (2003) Direct interaction with nup153 mediates binding of Tpr to the periphery of the nuclear pore complex. Mol Biol Cell 14:1923–1940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higa MM, Alam SL, Sundquist WI, Ullman KS (2007) Molecular characterization of the Ran-binding zinc finger domain of Nup153. J Biol Chem 282:17090–17100

    Article  CAS  PubMed  Google Scholar 

  • Hoelz A, Debler EW, Blobel G (2011) The structure of the nuclear pore complex. Annu Rev Biochem 80:613–643

    Article  CAS  PubMed  Google Scholar 

  • Jarnik M, Aebi U (1991) Toward a more complete 3-D structure of the nuclear pore complex. J Struct Biol 107:291–308

    Article  CAS  PubMed  Google Scholar 

  • Kapinos LE, Schoch RL, Wagner RS, Schleicher KD, Lim RY (2014) Karyopherin-centric control of nuclear pores based on molecular occupancy and kinetic analysis of multivalent binding with FG nucleoporins. Biophys J 106:1751–1762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SJ, Fernandez-Martinez J, Sampathkumar P, Martel A, Matsui T, Tsuruta H, Weiss TM, Shi Y, Markina-Inarrairaegui A, Bonanno JB, Sauder JM, Burley SK, Chait BT, Almo SC, Rout MP, Sali A (2014) Integrative structure-function mapping of the nucleoporin Nup133 suggests a conserved mechanism for membrane anchoring of the nuclear pore complex. Mol Cell Proteomics 13:2911–2926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiseleva E, Allen TD, Rutherford S, Bucci M, Wente SR, Goldberg MW (2004) Yeast nuclear pore complexes have a cytoplasmic ring and internal filaments. J Struct Biol 145:272–288

    Article  CAS  PubMed  Google Scholar 

  • Kiseleva E, Goldberg MW, Daneholt B, Allen TD (1996) RNP export is mediated by structural reorganization of the nuclear pore basket. J Mol Biol 260:304–311

    Article  CAS  PubMed  Google Scholar 

  • Kosinski J, Mosalaganti S, von Appen A, Teimer R, DiGuilio AL, Wan W, Bui KH, Hagen WJ, Briggs JA, Glavy JS, Hurt E, Beck M (2016) Molecular architecture of the inner ring scaffold of the human nuclear pore complex. Science 352:363–365

    Article  CAS  PubMed  Google Scholar 

  • Krull S, Dörries J, Boysen B, Reidenbach S, Magnius L, Norder H, Thyberg J, Cordes VC (2010) Protein Tpr is required for establishing nuclear pore-associated zones of heterochromatin exclusion. EMBO J 29:1659–1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labokha AA, Gradmann S, Frey S, Hülsmann BB, Urlaub H, Baldus M, Görlich D (2013) Systematic analysis of barrier-forming FG hydrogels from Xenopus nuclear pore complexes. EMBO J 32:204–218

    Article  CAS  PubMed  Google Scholar 

  • Lemaître C, Bickmore WA (2015) Chromatin at the nuclear periphery and the regulation of genome functions. Histochem Cell Biol 144:111–122

    Article  CAS  PubMed  Google Scholar 

  • Lemke EA (2016) The multiple faces of disordered nucleoporins. J Mol Biol 428:2011–2024

    Article  CAS  PubMed  Google Scholar 

  • Li B, Kohler JJ (2014) Glycosylation of the nuclear pore. Traffic 15:347–361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim RY, Köser J, Huang NP, Schwarz-Herion K, Aebi U (2007a) Nanomechanical interactions of phenylalanine-glycine nucleoporins studied by single molecule force-volume spectroscopy. J Struct Biol 159:277–289

    Article  CAS  PubMed  Google Scholar 

  • Lim RY, Fahrenkrog B, Köser J, Schwarz-Herion K, Deng J, Aebi U (2007b) Nanomechanical basis of selective gating by the nuclear pore complex. Science 318:640–643

    Article  CAS  PubMed  Google Scholar 

  • Lin DH, Zimmermann S, Stuwe T, Stuwe E, Hoelz A (2013) Structural and functional analysis of the C-terminal domain of Nup358/RanBP2. J Mol Biol 425:1318–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loïodice I, Alves A, Rabut G, Van Overbeek M, Ellenberg J, Sibarita JB, Doye V (2004) The entire Nup107-160 complex, including three new members, is targeted as one entity to kinetochores in mitosis. Mol Biol Cell 15:3333–3344

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma J, Yang W (2010) Three-dimensional distribution of transient interactions in the nuclear pore complex obtained from single-molecule snapshots. Proc Natl Acad Sci USA 107:7305–7310

    Article  PubMed  Google Scholar 

  • Ma J, Goryaynov A, Sarma A, Yang W (2012) Self-regulated viscous channel in the nuclear pore complex. Proc Natl Acad Sci USA 109:7326–7331

    Article  PubMed  Google Scholar 

  • Ma J, Liu Z, Michelotti N, Pitchiaya S, Veerapaneni R, Androsavich JR, Walter NG, Yang W (2013) High-resolution three-dimensional mapping of mRNA export through the nuclear pore. Nat Commun 4:2414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Goryaynov A, Yang W (2016) Super-resolution 3D tomography of interactions and competition in the nuclear pore complex. Nat Struct Mol Biol 23:239–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehlin H, Daneholt B, Skoglund U (1995) Structural interaction between the nuclear pore complex and a specific translocating RNP particle. J Cell Biol 129:1205–1216

    Article  CAS  PubMed  Google Scholar 

  • Merriam RW (1961) On the fine structure and composition of the nuclear envelope. J Biophys Biochem Cytol 11:559–570

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milles S, Mercadante D, Aramburu IV, Jensen MR, Banterle N, Koehler C, Tyagi S, Clarke J, Shammas SL, Blackledge M, Gräter F, Lemke EA (2015) Plasticity of an ultrafast interaction between nucleoporins and nuclear transport receptors. Cell 163:734–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murawala P, Tripathi MM, Vyas P, Salunke A, Joseph J (2009) Nup358 interacts with APC and plays a role in cell polarization. J Cell Sci 122:3113–3122

    Article  CAS  PubMed  Google Scholar 

  • Oates ME, Romero P, Ishida T, Ghalwash M, Mizianty MJ, Xue B, Dosztányi S, Uversky VN, Obradovic Z, Kurgan L, Dunker AK, Gough J (2013) D2P2: database of disordered protein predictions. Nucleic Acids Res 41(D1):D508–D516

    Article  CAS  PubMed  Google Scholar 

  • Palancade B, Zuccolo M, Loeillet S, Nicolas A, Doye V (2005) Pml39, a novel protein of the nuclear periphery required for nuclear retention of improper messenger ribonucleoparticles. Mol Biol Cell 16:5258–5268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panté N, Aebi U (1996) Sequential binding of import ligands to distinct nucleopore regions during their nuclear import. Science 273:1729–1732

    Article  PubMed  Google Scholar 

  • Park N, Schweers NJ, Gustin KE (2015) Selective removal of FG repeat domains from the nuclear pore complex by enterovirus 2A(pro). J Virol 89:11069–11079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paulillo SM, Powers MA, Ullman KS, Fahrenkrog B (2006) Changes in nucleoporin domain topology in response to chemical effectors. J Mol Biol 363:39–50

    Article  CAS  PubMed  Google Scholar 

  • Radu A, Moore MS, Blobel G (1995) The peptide repeat domain of nucleoporin Nup98 functions as a docking site in transport across the nuclear pore complex. Cell 81:215–222

    Article  CAS  PubMed  Google Scholar 

  • Raices M, D’Angelo MA (2017) Nuclear pore complexes and regulation of gene expression. Curr Opin Cell Biol 46:26–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajanala K, Nandicoori VK (2012) Localization of nucleoporin Tpr to the nuclear pore complex is essential or Tpr mediated regulation of the export of unspliced RNA. PLoS One 7:e29921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribbeck K, Görlich D (2002) The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion. EMBO J 21:2664–2671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ris H (1989) Three-dimensional imaging of cell ultrastructure with high resolution low voltage SEM. Inst Phys Conf Ser 98:657–662

    Google Scholar 

  • Ris H, Malecki M (1993) High-resolution field emission scanning electron microscope imaging of internal cell structures after Epon extraction from sections: a new approach to correlative ultrastructural and immunocytochemical studies. J Struct Biol 111:148–157

    Article  CAS  PubMed  Google Scholar 

  • Ritterhoff T, Das H, Hofhaus G, Schröder RR, Flotho A, Melchior F (2016) The RanBP2/RanGAP1*SUMO1/Ubc9 SUMO E3 ligase is a disassembly machine for Crm1-dependent nuclear export complexes. Nat Commun 7:11482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rout MP, Aitchison JD, Magnasco MO, Chait BT (2003) Virtual gating and nuclear transport: the hole picture. Trends Cell Biol 13:622–628

    Article  CAS  PubMed  Google Scholar 

  • Rutherford SA, Goldberg MW, Allen TD (1997) Three-dimensional visualization of the route of protein import: the role of nuclear pore complex substructures. Exp Cell Res 232:146–160

    Article  CAS  PubMed  Google Scholar 

  • Sakiyama Y, Mazur A, Kapinos LE, Lim RY (2016) Spatiotemporal dynamics of the nuclear pore complex transport barrier resolved by high-speed atomic force microscopy. Nat Nanotechnol 11:719–723

    Article  CAS  PubMed  Google Scholar 

  • Salina D, Enarson P, Rattner JB, Burke B (2003) Nup358 integrates nuclear envelope breakdown with kinetochore assembly. J Cell Biol 162:991–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schäpe J, Prausse S, Radmacher M, Stick R (2009) Influence of lamin A on the mechanical properties of amphibian oocyte nuclei measured by atomic force microscopy. Biophys J 96:4319–4325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoch RL, Kapinos LE, Lim RY (2012) Nuclear transport receptor binding avidity triggers a self-healing collapse transition in FG-nucleoporin molecular brushes. Proc Natl Acad Sci U S A 109:16911–16916

    Article  PubMed  PubMed Central  Google Scholar 

  • Schrader N, Koerner C, Koessmeier K, Bangert JA, Wittinghofer A, Stoll R, Vetter IR (2008) The crystal structure of the Ran-Nup153ZnF2 complex: a general Ran docking site at the nuclear pore complex. Structure 16:1116–1125

    Article  CAS  PubMed  Google Scholar 

  • Schwarz-Herion K, Maco B, Sauder U, Fahrenkrog B (2007) Domain topology of the p62 complex within the 3-D architecture of the nuclear pore complex. J Mol Biol 370:796–806

    Article  CAS  PubMed  Google Scholar 

  • Singh BB, Patel HH, Roepman R, Schick D, Ferreira PA (1999) The zinc finger cluster domain of RanBP2 is a specific docking site for the nuclear export factor, exportin-1. J Biol Chem 274:37370–37378

    Article  CAS  PubMed  Google Scholar 

  • Soop T, Ivarsson B, Björkroth B, Fomproix N, Masich S, Cordes VC, Daneholt B (2005) Nup153 affects entry of messenger and ribosomal ribonucleoproteins into the nuclear basket during export. Mol Biol Cell 16:5610–5620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strambio-de-Castillia C, Blobel G, Rout MP (1999) Proteins connecting the nuclear pore complex with the nuclear interior. J Cell Biol 144:839–855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stevens BJ, Swift H (1966) RNA transport from nucleus to cytoplasm in Chironomus salivary glands. J Cell Biol. 31:55–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Fukao Y, Iwamoto M, Haraguchi T, Hara-Nishimura I (2010) Identification and characterization of nuclear pore complex components in Arabidopsis thaliana. Plant Cell 22:4084–4097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walther TC, Pickersgill HS, Cordes VC, Goldberg MW, Allen TD, Mattaj IW, Fornerod M (2002) The cytoplasmic filaments of the nuclear pore complex are dispensable for selective nuclear protein import. J Cell Biol 158:63–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watson ML (1959) Further observations on the nuclear envelope of the animal cell. J Biophys Biochem Cytol 6:147–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werner A, Flotho A, Melchior F (2012) The RanBP2/RanGAP1*SUMO1/Ubc9 complex is a multisubunit SUMO E3 ligase. Mol Cell 46:287–298

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Matunis MJ, Kraemer D, Blobel G, Coutavas E (1995) Nup358, a cytoplasmically exposed nucleoporin with peptide repeats, Ran-GTP binding sites, zinc fingers, a cyclophilin A homologous domain, and a leucine-rich region. J Biol Chem 270:14209–14213

    Article  CAS  PubMed  Google Scholar 

  • Xu XM, Meulia T, Meier I (2007) Anchorage of plant RanGAP to the nuclear envelope involves novel nuclear-pore-associated proteins. Curr Biol 17:1157–1163

    Article  CAS  PubMed  Google Scholar 

  • Yamada J, Phillips JL, Patel S, Goldfien G, Calestagne-Morelli A, Huang H, Reza R, Acheson J, Krishnan VV, Newsam S, Gopinathan A, Lau EY, Colvin ME, Uversky VN, Rexach MF (2010) A bimodal distribution of two distinct categories of intrinsically disordered structures with separate functions in FG nucleoporins. Mol Cell Proteomics 9:2205–2224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang W (2013) Distinct, but not completely separate spatial transport routes in the nuclear pore complex. Nucleus 4:166–175

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao CL, Mahboobi SH, Moussavi-Baygi R, Mofrad MR (2014) The interaction of CRM1 and the nuclear pore protein Tpr. PLoS One 9:e93709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Graumann K, Evans DE, Meier I (2012) Novel plant SUN-KASH bridges are involved in RanGAP anchoring and nuclear shape determination. J Cell Biol 196:203–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks to Christine Richardson for Fig. 3.4. Work was supported by Biotechnology and Biological Sciences Research Council, UK (grant numbers BB/E015735/1 and BB/G011818/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin W. Goldberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goldberg, M.W. (2018). Dynamic Structures of the Nuclear Pore Complex and Their Roles in Nucleocytoplasmic Transport. In: Yang, W. (eds) Nuclear-Cytoplasmic Transport. Nucleic Acids and Molecular Biology, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-319-77309-4_3

Download citation

Publish with us

Policies and ethics