Skip to main content

Role of Complement in Immunity Against Malaria

  • Chapter
  • First Online:
  • 397 Accesses

Abstract

The role of complement in the immunity against malaria has been severely understudied. As a result, we know very little about this subject. Antibodies play an important role in suppressing parasitemia and could work by any or a combination of several mechanisms: inhibition of sporozoite invasion of hepatocytes, by blocking merozoite invasion of red blood cells (RBCs), by inducing phagocytosis of merozoites, or by inducing the phagocytosis of infected RBCs (IRBCs). Although there are some data that sporozoites are susceptible to complement activation, this seems to require high antibody levels. Complement can enhance the phagocytosis of IRBCs in the presence of nonimmune serum. In this system, natural antibodies that recognize altered native membrane antigens may play a role in activating complement, but there is also evidence of antibody-independent complement activation on the surface of IRBCs. The contribution of complement to anti-merozoite immunity was recently studied using filter-purified merozoites. C1q appeared to have a critical role in the inhibitory activity of anti-merozoite antibodies, but further studies are needed to confirm this and other contradictory observations reporting that antibody and complement can also enhance RBC invasion by merozoites. In vivo, cobra venom factor (CVF) has been used commonly in animal models to deplete complement. However, this approach is confounded by the fact that CVF is a complement activator that can promote indiscriminate deposition of C3b. Thus, CVF has produced contradictory results. Although there is now wide availability of genetically modified mice that are deficient in specific complement factors, relatively little work has been done with these animals. C1q−/− mice have been shown to have increased P. chabaudi parasitemia upon reinfection. On the other hand, C3−/− mice showed decreased P. berghei parasitemia. Much more work is needed before we have a clear picture of the role of complement in anti-malarial immunity. A better understanding of the role of complement in malaria immunity is needed if we are ever to develop a highly effective vaccine against malaria.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arese P, Turrini F, Ginsburg H (1991) Erythrophagocytosis in malaria: host defence or menace to the macrophage? Parasitol Today 7(1):25–28

    Article  PubMed  CAS  Google Scholar 

  • Atkinson JP, Glew RH, Neva FA, Frank MM (1975) Serum complement and immunity in experimental simian malaria. II. Preferential activation of early components and failure of depletion of late components to inhibit protective immunity. J Infect Dis 131(1):26–33

    Article  PubMed  CAS  Google Scholar 

  • Ballou WR, Hoffman SL, Sherwood JA, Hollingdale MR, Neva FA, Hockmeyer WT, Gordon DM, Schneider I, Wirtz RA, Young JF, Reeve P, Chulay JD (1987) Safety and efficacy of a recombinant DNA Plasmodium falciparum sporozoite vaccine. Lancet 1(8545):1277–1281

    Article  PubMed  CAS  Google Scholar 

  • Beeson JG, Drew DR, Boyle MJ, Feng G, Fowkes FJ, Richards JS (2016) Merozoite surface proteins in red blood cell invasion, immunity and vaccines against malaria. FEMS Microbiol Rev 40(3):343–372

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Biryukov S, Stoute JA (2016) The use of filter-purified merozoites to assess anti-merozoite immunity. EBioMedicine 14:11–12

    Article  PubMed  PubMed Central  Google Scholar 

  • Biryukov S, Angov E, Landmesser ME, Spring MD, Ockenhouse CF, Stoute JA (2016) Complement and antibody-mediated enhancement of red blood cell invasion and growth of malaria parasites. EBioMedicine 9:207–216

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouharoun-Tayoun H, Attanath P, Sabchareon A, Chongsuphajaisiddhi T, Druilhe P (1990) Antibodies that protect humans against Plasmodium falciparum blood stages do not on their own inhibit parasite growth and invasion in vitro, but act in cooperation with monocytes. J Exp Med 172(6):1633–1641

    Article  PubMed  CAS  Google Scholar 

  • Bouharoun-Tayoun H, Oeuvray C, Lunel F, Druilhe P (1995) Mechanisms underlying the monocyte-mediated antibody-dependent killing of Plasmodium falciparum asexual blood stages. J Exp Med 182(2):409–418

    Article  PubMed  CAS  Google Scholar 

  • Boyle MJ, Reiling L, Feng G, Langer C, Osier FH, Aspeling-Jones H, Cheng YS, Stubbs J, Tetteh KK, Conway DJ, McCarthy JS, Muller I, Marsh K, Anders RF, Beeson JG (2015) Human antibodies fix complement to inhibit Plasmodium falciparum invasion of erythrocytes and are associated with protection against malaria. Immunity 42(3):580–590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bruce-Chwatt LJ (1956) Biometric study of spleen- and liver-weights in Africans and Europeans, with special reference to endemic malaria. Bull World Health Organ 15(3–5):513–548

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cavinato RA, Bastos KR, Sardinha LR, Elias RM, Alvarez JM, D’Imperio Lima MR (2001) Susceptibility of the different developmental stages of the asexual (schizogonic) erythrocyte cycle of Plasmodium chabaudi chabaudi to hyperimmune serum, immunoglobulin (Ig)G1, IgG2a and F(ab′)2 fragments. Parasite Immunol 23(11):587–597

    Article  PubMed  CAS  Google Scholar 

  • Celada A, Cruchaud A, Perrin LH (1982) Opsonic activity of human immune serum on in vitro phagocytosis of Plasmodium falciparum infected red blood cells by monocytes. Clin Exp Immunol 47(3):635–644

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chapman WE, Ward PA (1977) Babesia rodhaini: requirement of complement for penetration of human erythrocytes. Science 196(4285):67–70

    Article  PubMed  CAS  Google Scholar 

  • Coggeshall LT, Kumm HW (1937) Demonstration of passive immunity in experimental monkey malaria. J Exp Med 66(2):177–190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coggeshall LT, Kumm HW (1938) Effect of repeated superinfection upon the potency of immune serum of monkeys harboring chronic infections of plasmodium knowlesi. J Exp Med 68(1):17–27

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cohen S, Butcher GA (1970a) Properties of protective malarial antibody. Immunology 19(2):369–383

    PubMed  PubMed Central  CAS  Google Scholar 

  • Cohen S, Butcher GA (1970b) Properties of protective malarial antibody. Nature 225(5234):732–734

    Article  PubMed  CAS  Google Scholar 

  • Cohen S, McGregor IA, Carrington S (1961) Gamma-globulin and acquired immunity to human malaria. Nature 192:733–737

    Article  PubMed  CAS  Google Scholar 

  • Cohen S, Butcher GA, Crandall RB (1969) Action of malarial antibody in vitro. Nature 223(5204):368–371

    Article  PubMed  CAS  Google Scholar 

  • Cohen J, Nussenzweig V, Nussenzweig R, Vekemans J, Leach A (2010) From the circumsporozoite protein to the RTS, S/AS candidate vaccine. Hum Vaccin 6(1):90–96

    Article  PubMed  CAS  Google Scholar 

  • Craig A, Scherf A (2001) Molecules on the surface of the Plasmodium falciparum infected erythrocyte and their role in malaria pathogenesis and immune evasion. Mol Biochem Parasitol 115(2):129–143

    Article  PubMed  CAS  Google Scholar 

  • Dasari P, Heber SD, Beisele M, Torzewski M, Reifenberg K, Orning C, Fries A, Zapf AL, Baumeister S, Lingelbach K, Udomsangpetch R, Bhakdi SC, Reiss K, Bhakdi S (2012) Digestive vacuole of Plasmodium falciparum released during erythrocyte rupture dually activates complement and coagulation. Blood 119(18):4301–4310

    Article  PubMed  CAS  Google Scholar 

  • Diggs CL, Osler AG (1969) Humoral immunity in rodent malaria. II. Inhibition of parasitemia by serum antibody. J Immunol 102(2):298–305

    PubMed  CAS  Google Scholar 

  • Diggs CL, Osler AG (1975) Humoral immunity in rodent malaria. III: studies on the site of antibody action. J Immunol 114(4):1243–1247

    PubMed  CAS  Google Scholar 

  • Eda S, Sherman IW (2002) Cytoadherence of malaria-infected red blood cells involves exposure of phosphatidylserine. Cell Physiol Biochem 12(5–6):373–384

    Article  PubMed  CAS  Google Scholar 

  • Epstein N, Miller LH, Kaushel DC, Udeinya IJ, Rener J, Howard RJ, Asofsky R, Aikawa M, Hess RL (1981) Monoclonal antibodies against a specific surface determinant on malarial (Plasmodium knowlesi) merozoites block erythrocyte invasion. J Immunol 127(1):212–217

    PubMed  CAS  Google Scholar 

  • Fadok VA, Warner ML, Bratton DL, Henson PM (1998) CD36 is required for phagocytosis of apoptotic cells by human macrophages that use either a phosphatidylserine receptor or the vitronectin receptor (alpha v beta 3). J Immunol 161(11):6250–6257

    PubMed  CAS  Google Scholar 

  • Frevert U, Krzych U (2015) Plasmodium cellular effector mechanisms and the hepatic microenvironment. Front Microbiol 6:482

    PubMed  PubMed Central  Google Scholar 

  • Frevert U, Engelmann S, Zougbede S, Stange J, Ng B, Matuschewski K, Liebes L, Yee H (2005) Intravital observation of Plasmodium berghei sporozoite infection of the liver. PLoS Biol 3(6):e192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Greenberg ME, Sun M, Zhang R, Febbraio M, Silverstein R, Hazen SL (2006) Oxidized phosphatidylserine-CD36 interactions play an essential role in macrophage-dependent phagocytosis of apoptotic cells. J Exp Med 203(12):2613–2625

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harnagel EE, Rhudy FV (1954) Falciparum malaria; report of a fatal case and autopsy findings. Calif Med 81(2):89–91

    PubMed  PubMed Central  CAS  Google Scholar 

  • Harris JV, Bohr TM, Stracener C, Landmesser ME, Torres V, Mbugua A, Moratz C, Stoute JA (2012) Sequential Plasmodium chabaudi and Plasmodium berghei infections provide a novel model of severe malarial anemia. Infect Immun 80(9):2997–3007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Herrington DA, Clyde DF, Losonsky G, Cortesia M, Murphy JR, Davis J, Baqar S, Felix AM, Heimer EP, Gillessen D, Nardin E, Nussenzweig RS, Hollingdale MR, Levin MM (1987) Safety and immunogenicity in man of a synthetic peptide malaria vaccine against Plasmodium falciparum sporozoites. Nature 328(6127):257–259

    Article  PubMed  CAS  Google Scholar 

  • Hollingdale MR, Sedegah M (2017) Development of whole sporozoite malaria vaccines. Expert Rev Vaccines 16(1):45–54

    Article  PubMed  CAS  Google Scholar 

  • Hunter KW Jr, Winkelstein JA, Simpson TW (1979) Serum opsonic activity in rodent malaria: functional and immunochemical characteristics in vitro. J Immunol 123(6):2582–2587

    PubMed  Google Scholar 

  • Jack RM, Ward PA (1980a) Babesia rodhaini interactions with complement: relationship to parasitic entry into red cells. J Immunol 124(4):1566–1573

    PubMed  CAS  Google Scholar 

  • Jack RM, Ward PA (1980b) The role in vivo of C3 and the C3b receptor in babesial infection in the rat. J Immunol 124(4):1574–1578

    PubMed  CAS  Google Scholar 

  • Jafarshad A, Dziegiel MH, Lundquist R, Nielsen LK, Singh S, Druilhe PL (2007) A novel antibody-dependent cellular cytotoxicity mechanism involved in defense against malaria requires costimulation of monocytes FcgammaRII and FcgammaRIII. J Immunol 178(5):3099–3106

    Article  PubMed  CAS  Google Scholar 

  • Jarra W, Hills LA, March JC, Brown KN (1986) Protective immunity to malaria. Studies with cloned lines of Plasmodium chabaudi chabaudi and P. berghei in CBA/Ca mice. II. The effectiveness and inter- or intra-species specificity of the passive transfer of immunity with serum. Parasite Immunol 8(3):239–254

    Article  PubMed  CAS  Google Scholar 

  • Kawamoto Y, Winger LA, Hong K, Matsuoka H, Chinzei Y, Kawamoto F, Kamimura K, Arakawa R, Sinden RE, Miyama A (1992) Plasmodium berghei: sporozoites are sensitive to human serum but not susceptible host serum. Exp Parasitol 75(3):361–368

    Article  PubMed  CAS  Google Scholar 

  • Kennedy AT, Schmidt CQ, Thompson JK, Weiss GE, Taechalertpaisarn T, Gilson PR, Barlow PN, Crabb BS, Cowman AF, Tham WH (2015) Recruitment of factor H as a novel complement evasion strategy for blood-stage Plasmodium falciparum infection. J Immunol 196(3):1239–1248

    Article  PubMed  CAS  Google Scholar 

  • Kennedy AT, Wijeyewickrema LC, Huglo A, Lin C, Pike R, Cowman AF, Tham WH (2017) Recruitment of human C1 esterase inhibitor controls complement activation on blood stage Plasmodium falciparum merozoites. J Immunol 198(12):4728–4737

    Article  PubMed  CAS  Google Scholar 

  • Khusmith S, Druilhe P (1982) Specific arming of monocytes by cytophilic IgG promotes Plasmodium falciparum merozoite ingestion. Trans R Soc Trop Med Hyg 76(3):423–424

    Article  PubMed  CAS  Google Scholar 

  • Khusmith S, Druilhe P (1983a) Antibody-dependent ingestion of P. falciparum merozoites by human blood monocytes. Parasite Immunol 5(4):357–368

    Article  PubMed  CAS  Google Scholar 

  • Khusmith S, Druilhe P (1983b) Cooperation between antibodies and monocytes that inhibit in vitro proliferation of Plasmodium falciparum. Infect Immun 41(1):219–223

    PubMed  PubMed Central  CAS  Google Scholar 

  • Khusmith S, Druilhe P, Gentilini M (1982) Enhanced Plasmodium falciparum merozoite phagocytosis by monocytes from immune individuals. Infect Immun 35(3):874–879

    PubMed  PubMed Central  CAS  Google Scholar 

  • Krishnan V, Ponnuraj K, Xu Y, Macon K, Volanakis JE, Narayana SV (2009) The crystal structure of cobra venom factor, a cofactor for C3- and C5-convertase CVFBb. Structure 17(4):611–619

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumaratilake LM, Ferrante A (2000) Opsonization and phagocytosis of Plasmodium falciparum merozoites measured by flow cytometry. Clin Diagn Lab Immunol 7(1):9–13

    PubMed  PubMed Central  CAS  Google Scholar 

  • Long CA, Daly TM, Kima P, Srivastava I (1994) Immunity to erythrocytic stages of malarial parasites. Am J Trop Med Hyg 50(4 Suppl):27–32

    Article  PubMed  CAS  Google Scholar 

  • Majarian WR, Daly TM, Weidanz WP, Long CA (1984) Passive immunization against murine malaria with an IgG3 monoclonal antibody. J Immunol 132(6):3131–3137

    PubMed  CAS  Google Scholar 

  • McCoy ME, Golden HE, Doll TA, Yang Y, Kaba SA, Zou X, Gerbasi VR, Burkhard P, Lanar DE (2013) Mechanisms of protective immune responses induced by the Plasmodium falciparum circumsporozoite protein-based, self-assembling protein nanoparticle vaccine. Malar J 12:136

    Article  PubMed  PubMed Central  Google Scholar 

  • McGilvray ID, Serghides L, Kapus A, Rotstein OD, Kain KC (2000) Nonopsonic monocyte/macrophage phagocytosis of Plasmodium falciparum-parasitized erythrocytes: a role for CD36 in malarial clearance. Blood 96(9):3231–3240

    PubMed  CAS  Google Scholar 

  • McGregor IA (1964) The passive transfer of human malarial immunity. Am J Trop Med Hyg 13:237–239

    Article  Google Scholar 

  • Miller LH, Aikawa M, Dvorak JA (1975) Malaria (Plasmodium knowlesi) merozoites: immunity and the surface coat. J Immunol 114(4):1237–1242

    PubMed  CAS  Google Scholar 

  • Miller LH, David PH, Hudson DE, Hadley TJ, Richards RL, Aikawa M (1984) Monoclonal antibodies to a 140,000-m.w. protein on Plasmodium knowlesi merozoites inhibit their invasion of rhesus erythrocytes. J Immunol 132(1):438–442

    PubMed  CAS  Google Scholar 

  • Packer BJ, Kreier JP (1986) Plasmodium berghei malaria: effects of acute-phase serum and erythrocyte-bound immunoglobulins on erythrophagocytosis by rat peritoneal macrophages. Infect Immun 51(1):141–146

    PubMed  PubMed Central  CAS  Google Scholar 

  • Patel SN, Serghides L, Smith TG, Febbraio M, Silverstein RL, Kurtz TW, Pravenec M, Kain KC (2004) CD36 mediates the phagocytosis of Plasmodium falciparum-infected erythrocytes by rodent macrophages. J Infect Dis 189(2):204–213

    Article  PubMed  CAS  Google Scholar 

  • Quinn TC, Wyler DJ (1979) Mechanisms of action of hyperimmune serum in mediating protective immunity to rodent malaria (Plasmodium berghei). J Immunol 123(5):2245–2249

    PubMed  CAS  Google Scholar 

  • Ramos TN, Bullard DC, Barnum SR (2012) Deletion of the complement phagocytic receptors CR3 and CR4 does not alter susceptibility to experimental cerebral malaria. Parasite Immunol 34(11):547–550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Renia L, Goh YS (2016) Malaria parasites: the great escape. Front Immunol 7:463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rosa TF, Flammersfeld A, Ngwa CJ, Kiesow M, Fischer R, Zipfel PF, Skerka C, Pradel G (2015) The Plasmodium falciparum blood stages acquire factor H family proteins to evade destruction by human complement. Cell Microbiol 18(4):573–590

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sabchareon A, Burnouf T, Ouattara D, Attanath P, Bouharoun-Tayoun H, Chantavanich P, Foucault C, Chongsuphajaisiddhi T, Druilhe P (1991) Parasitologic and clinical human response to immunoglobulin administration in falciparum malaria. Am J Trop Med Hyg 45(3):297–308

    Article  PubMed  CAS  Google Scholar 

  • Sam-Yellowe TY, Judd RC (1990) Passive immunization against Plasmodium chabaudi malaria with Pch 21 merozoite monoclonal antibody. Parasitol Res 76(5):457–460

    Article  PubMed  CAS  Google Scholar 

  • Schetters TP, Van LP, Van Zon AA, Eling WM (1985) Interactions of Plasmodium berghei-infected erythrocytes with complement. J Protozool 32(2):321–325

    Article  PubMed  CAS  Google Scholar 

  • Seinen W, Stegmann T, Kuil H (1982) Complement does not play a role in promoting Babesia rodhaini infections in Balb/C mice. Z Parasitenkd 68(3):249–257

    Article  PubMed  CAS  Google Scholar 

  • Shear HL, Nussenzweig RS, Bianco C (1979) Immune phagocytosis in murine malaria. J Exp Med 149(6):1288–1298

    Article  PubMed  CAS  Google Scholar 

  • Shin SC, Vanderberg JP, Terzakis JA (1982) Direct infection of hepatocytes by sporozoites of Plasmodium berghei. J Protozool 29(3):448–454

    Article  PubMed  CAS  Google Scholar 

  • Spencer Valero LM, Ogun SA, Fleck SL, Ling IT, Scott-Finnigan TJ, Blackman MJ, Holder AA (1998) Passive immunization with antibodies against three distinct epitopes on Plasmodium yoelii merozoite surface protein 1 suppresses parasitemia. Infect Immun 66(8):3925–3930

    PubMed  PubMed Central  CAS  Google Scholar 

  • Spencer AJ, Longley RJ, Gola A, Ulaszewska M, Lambe T, Hill AV (2017) The threshold of protection from liver-stage malaria relies on a fine balance between the number of infected hepatocytes and effector CD8+ T cells present in the liver. J Immunol 198(5):2006–2016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stanley HA, Mayes JT, Cooper NR, Reese RT (1984) Complement activation by the surface of Plasmodium falciparum infected erythrocytes. Mol Immunol 21(2):145–150

    Article  PubMed  CAS  Google Scholar 

  • Stevenson MM, Kraal G (1989) Histological changes in the spleen and liver of C57BL/6 and A/J mice during Plasmodium chabaudi AS infection. Exp Mol Pathol 51(1):80–95

    Article  PubMed  CAS  Google Scholar 

  • Stoute JA, Slaoui M, Heppner DG, Momin P, Kester KE, Desmons P, Wellde BT, Garcon N, Krzych U, Marchand M (1997) A preliminary evaluation of a recombinant circumsporozoite protein vaccine against Plasmodium falciparum malaria. RTS,S Malaria Vaccine Evaluation Group. N Engl J Med 336(2):86–91

    Article  PubMed  CAS  Google Scholar 

  • Taylor PR, Seixas E, Walport MJ, Langhorne J, Botto M (2001) Complement contributes to protective immunity against reinfection by Plasmodium chabaudi chabaudi parasites. Infect Immun 69(6):3853–3859

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tosta CE, Wedderburn N (1980) Immune phagocytosis of Plasmodium yoelii-infected erythrocytes by macrophages and eosinophils. Clin Exp Immunol 42(1):114–120

    PubMed  PubMed Central  CAS  Google Scholar 

  • Touray MG, Seeley DC Jr, Miller LH (1994) Plasmodium gallinaceum: differential lysis of two developmental stages of malaria sporozoites by the alternative pathway of complement. Exp Parasitol 78(3):294–301

    Article  PubMed  CAS  Google Scholar 

  • Turrini F, Ginsburg H, Bussolino F, Pescarmona GP, Serra MV, Arese P (1992) Phagocytosis of Plasmodium falciparum-infected human red blood cells by human monocytes: involvement of immune and nonimmune determinants and dependence on parasite developmental stage. Blood 80(3):801–808

    PubMed  CAS  Google Scholar 

  • Turrini F, Giribaldi G, Carta F, Mannu F, Arese P (2003) Mechanisms of band 3 oxidation and clustering in the phagocytosis of Plasmodium falciparum-infected erythrocytes. Redox Rep 8(5):300–303

    Article  PubMed  CAS  Google Scholar 

  • Ward PA, Sterzel RB, Lucia HL, Campbell GH, Jack RM (1981) Complement does not facilitate plasmodial infections. J Immunol 126(5):1826–1828

    PubMed  CAS  Google Scholar 

  • Weiss WR, Jiang CG (2012) Protective CD8+ T lymphocytes in primates immunized with malaria sporozoites. PLoS One 7(2):e31247

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • White MT, Bejon P, Olotu A, Griffin JT, Riley EM, Kester KE, Ockenhouse CF, Ghani AC (2013) The relationship between RTS,S vaccine-induced antibodies, CD4(+) T cell responses and protection against Plasmodium falciparum infection. PLoS One 8(4):e61395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Whitten R, Milner DA Jr, Yeh MM, Kamiza S, Molyneux ME, Taylor TE (2011) Liver pathology in Malawian children with fatal encephalopathy. Hum Pathol 42(9):1230–1239

    Article  PubMed  PubMed Central  Google Scholar 

  • Yahata K, Treeck M, Culleton R, Gilberger TW, Kaneko O (2012) Time-lapse imaging of red blood cell invasion by the rodent malaria parasite Plasmodium yoelii. PLoS One 7(12):e50780

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Stoute .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stoute, J.A. (2018). Role of Complement in Immunity Against Malaria. In: Stoute, J. (eds) Complement Activation in Malaria Immunity and Pathogenesis. Springer, Cham. https://doi.org/10.1007/978-3-319-77258-5_7

Download citation

Publish with us

Policies and ethics