Skip to main content

Intraoperative Navigation: Techniques and Systems in Craniofacial Trauma

  • Chapter
  • First Online:
Craniofacial Trauma

Abstract

Intraoperative navigation in its present form is the result of technical advances that have taken place over more than three decades. These started with the need to find anatomical targets accurately, to define surgical pathways without harming neighboring structures and, especially in cranio-maxillofacial surgery, to intraoperatively control the position of bony structures and implants. The introduction of navigation has resulted in a paradigm shift: surgical procedures must be planned preoperatively based on medical three-dimensional (3D) imaging, and the desired outcome must be defined in advance. After registering the patient’s anatomy with 3D imaging and devising a preoperative plan, navigation can be applied until the preplanned outcome is achieved. Quality assessment includes evaluation of intraoperative or postoperative 3D images and the virtual surgical plan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambrose J, Hounsfield G. Computerized transverse axial tomography. Br J Radiol. 1973;46(542):148–9.

    PubMed  CAS  Google Scholar 

  • Andrews JC, et al. Stereolithographic model construction from CT for assessment and surgical planning in congenital aural atresia. Am J Otol. 1994;15(3):335–9.

    PubMed  CAS  Google Scholar 

  • Banks J. Adding value in additive manufacturing: researchers in the United Kingdom and Europe look to 3D printing for customization. IEEE Pulse. 2013;4(6):22–6.

    Article  PubMed  Google Scholar 

  • Bell RB. Computer planning and intraoperative navigation in cranio-maxillofacial surgery. Oral Maxillofac Surg Clin North Am. 2010;22(1):135–56.

    Article  PubMed  Google Scholar 

  • Blumer M, et al. Influence of mirrored computed tomograms on decision-making for revising surgically treated orbital floor fractures. J Oral Maxillofac Surg. 2015;73(10):1982.e1–9.

    Article  Google Scholar 

  • Donlon WC, Young P, Vassiliadis A. Three-dimensional computed tomography for maxillofacial surgery: report of cases. J Oral Maxillofac Surg. 1988;46(2):142–7.

    Article  CAS  PubMed  Google Scholar 

  • Dubois L, et al. Predictability in orbital reconstruction. A human cadaver study, part III: Implant-oriented navigation for optimized reconstruction. J Craniomaxillofac Surg. 2015a;43(10):2050–6.

    Article  PubMed  Google Scholar 

  • Dubois L, et al. Predictability in orbital reconstruction: A human cadaver study. Part II: Navigation-assisted orbital reconstruction. J Craniomaxillofac Surg. 2015b;43(10):2042–9.

    Article  PubMed  Google Scholar 

  • Eggers G, Muhling J, Marmulla R. Image-to-patient registration techniques in head surgery. Int J Oral Maxillofac Surg. 2006;35(12):1081–95.

    Article  CAS  PubMed  Google Scholar 

  • Ellis E. Intraoperative CT scanning in maxillofacial trauma: what is its role? Int J Oral Maxillofac Surg. 2015;44:e5.

    Article  Google Scholar 

  • Essig H, et al. Virtual 3D tumor marking-exact intraoperative coordinate mapping improve post-operative radiotherapy. Radiat Oncol. 2011;6:159.

    Article  PubMed  PubMed Central  Google Scholar 

  • Essig H, et al. Referencing of markerless CT data sets with cone beam subvolume including registration markers to ease computer-assisted surgery - a clinical and technical research. Int J Med Robot. 2013;9(3):e39–45.

    Article  PubMed  Google Scholar 

  • Essig H, et al. Patient-specific biodegradable implant in pediatric craniofacial surgery. J Craniomaxillofac Surg. 2017;45(2):216–22.

    Article  CAS  PubMed  Google Scholar 

  • Eufinger H, et al. Single-step fronto-orbital resection and reconstruction with individual resection template and corresponding titanium implant: a new method of computer-aided surgery. J Craniomaxillofac Surg. 1998;26(6):373–8.

    Article  CAS  PubMed  Google Scholar 

  • Ewers R, et al. [Occlusal splint for the transmission, fixation and control of planned bite relations in progenia operations]. ZWR. 1977;86(12):630–2.

    Google Scholar 

  • Gellrich NC, et al. Computer-assisted secondary reconstruction of unilateral posttraumatic orbital deformity. Plast Reconstr Surg. 2002;110(6):1417–29.

    PubMed  Google Scholar 

  • Hassfeld S, Muhling J, Zoller J. Intraoperative navigation in oral and maxillofacial surgery. Int J Oral Maxillofac Surg. 1995;24(1 Pt 2):111–9.

    Article  CAS  PubMed  Google Scholar 

  • Heissler E, et al. Custom-made cast titanium implants produced with CAD/CAM for the reconstruction of cranium defects. Int J Oral Maxillofac Surg. 1998;27(5):334–8.

    Article  CAS  PubMed  Google Scholar 

  • Hinzpeter R, et al. Imaging algorithms and CT protocols in trauma patients: survey of Swiss emergency centers. Eur Radiol. 2017;27(5):1922–8.

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann J, et al. Validation of 3D-laser surface registration for image-guided cranio-maxillofacial surgery. J Craniomaxillofac Surg. 2005;33(1):13–8.

    Article  PubMed  Google Scholar 

  • Kermer C, et al. Preoperative stereolithographic model planning for primary reconstruction in craniomaxillofacial trauma surgery. J Craniomaxillofac Surg. 1998;26(3):136–9.

    Article  CAS  PubMed  Google Scholar 

  • Kosugi Y, et al. An articulated neurosurgical navigation system using MRI and CT images. IEEE Trans Biomed Eng. 1988;35(2):147–52.

    Article  CAS  PubMed  Google Scholar 

  • Leksell L. The stereotaxic method and radiosurgery of the brain. Acta Chir Scand. 1951;102(4):316–9.

    PubMed  CAS  Google Scholar 

  • Luebbers HT, et al. Comparison of different registration methods for surgical navigation in cranio-maxillofacial surgery. J Craniomaxillofac Surg. 2008;36(2):109–16.

    Article  PubMed  Google Scholar 

  • Mankovich NJ, Cheeseman AM, Stoker NG. The display of three-dimensional anatomy with stereolithographic models. J Digit Imaging. 1990;3(3):200–3.

    Article  CAS  PubMed  Google Scholar 

  • Marmulla R, et al. [Precision of computer-assisted systems in profile reconstructive interventions on the face]. Mund Kiefer Gesichtschir. 1997;1(Suppl 1):S65–7.

    Google Scholar 

  • Marsh JL, Vannier MW. The “third” dimension in craniofacial surgery. Plast Reconstr Surg. 1983;71(6):759–67.

    Article  CAS  PubMed  Google Scholar 

  • Metzger MC, et al. Comparison of 4 registration strategies for computer-aided maxillofacial surgery. Otolaryngol Head Neck Surg. 2007;137(1):93–9.

    Article  PubMed  Google Scholar 

  • Mezger U, Jendrewski C, Bartels M. Navigation in surgery. Langenbecks Arch Surg. 2013;398(4):501–14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Paraskevopoulos D, et al. Comparative study of application accuracy of two frameless neuronavigation systems: experimental error assessment quantifying registration methods and clinically influencing factors. Neurosurg Rev. 2010;34(2):217–28.

    Article  PubMed  Google Scholar 

  • Roscoe L. Stereolithography interface specification. America-3D Systems Inc.; 1988. p. 27.

    Google Scholar 

  • Santler G, et al. Stereolithography versus milled three-dimensional models: comparison of production method, indication, and accuracy. Comput Aided Surg. 1998;3(5):248–56.

    Article  CAS  PubMed  Google Scholar 

  • Schmelzeisen R, et al. Navigation-aided reconstruction of medial orbital wall and floor contour in cranio-maxillofacial reconstruction. Injury. 2004;35(10):955–62.

    Article  PubMed  Google Scholar 

  • Schwestka R, et al. Control of vertical position of the maxilla in orthognathic surgery: clinical application of the sandwich splint. Int J Adult Orthodon Orthognath Surg. 1990;5(2):133–6.

    PubMed  CAS  Google Scholar 

  • Spiegel EA, et al. Stereotaxic apparatus for operations on the human brain. Science. 1947;106(2754):349–50.

    Article  CAS  PubMed  Google Scholar 

  • Villalobos H, Germano IM. Clinical evaluation of multimodality registration in frameless stereotaxy. Comput Aided Surg. 1999;4(1):45–9.

    Article  CAS  PubMed  Google Scholar 

  • Wagner M, Essig H. Intraoperative 3-D-Bildgebung als Ergänzung oder Ersatz der intraoperativen Navigation? Der MKG-Chirurg. 2017;10(3):190–6.

    Article  Google Scholar 

  • Wagner ME, et al. Development and first clinical application of automated virtual reconstruction of unilateral midface defects. J Craniomaxillofac Surg. 2015;43(8):1340–7.

    Article  PubMed  Google Scholar 

  • Watzinger F, et al. Computer-aided navigation in secondary reconstruction of post-traumatic deformities of the zygoma. J Craniomaxillofac Surg. 1997;25(4):198–202.

    Article  CAS  PubMed  Google Scholar 

  • Widmann G, et al. Use of a surgical navigation system for CT-guided template production. Int J Oral Maxillofac Implants. 2007;22(1):72–8.

    PubMed  Google Scholar 

  • Zachow S. Computational planning in facial surgery. Facial Plast Surg. 2015;31(5):446–62.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Essig M.D., D.D.S., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Essig, H. (2019). Intraoperative Navigation: Techniques and Systems in Craniofacial Trauma. In: Hardt, N., Kessler, P., Kuttenberger, J. (eds) Craniofacial Trauma. Springer, Cham. https://doi.org/10.1007/978-3-319-77210-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77210-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77209-7

  • Online ISBN: 978-3-319-77210-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics