Skip to main content

Augmented Marrow Stimulation for Cartilage Repair

  • Chapter
  • First Online:
  • 771 Accesses

Abstract

Representing the most popular marrow stimulation technique, microfracture has been established as a gold standard for the treatment of articular cartilage defects.

In order to maintain the idea of using autologous cells for cartilage repair and to further develop the idea of an autologous one-step procedure to repair cartilage lesions, the use of resorbable scaffolds was developed with an increase of primary stability due to an initial protection of the blood clot.

Augmented marrow stimulation techniques for the treatment of cartilage defects promise the potential for:

  • Faster rehabilitation due to increased initial stability of the regenerating tissue

  • Better tissue quality since early compression and shear stress promotes chondrogenesis

  • The benefits of a single-stage procedure compared to a chondrocyte transplantation

  • Multiple future options to increase outcome quality, e.g., with growth factor augmentation or drug release

A variety of different techniques and materials are available for arthroscopic and open surgery.

The evidence for the effectiveness of the microfracture procedure alone or the scaffold augmented variation is largely derived from case series and few randomized trials – both with obvious limitations.

Maybe a new approach to clinical evidence might be necessary. International registries should be able to create comprehensive datasets at significant lower costs and administrative hurdles and therefore promote the safe and quick implementation of new developments in the field of cartilage repair.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rodrigo JJ, Steadman JR, Silliman J, Fulstone HA. Improvement of full thickness chondral defect healing in the human knee after debridement and microfracture using continuous passive motion. Am J Knee Surg. 1994;7:109–16.

    Google Scholar 

  2. Krüger JP, Endres M, Neumann K, Häupl T, Erggelet C, Kaps C. Chondrogenic differentiation of human subchondral progenitor cells is impaired by rheumatoid arthritis synovial fluid. J Orthop Res. 2010;28(6):819–27. https://doi.org/10.1002/jor.21058.

    Article  PubMed  CAS  Google Scholar 

  3. Shapiro F, Koide S, Glimcher MJ. Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. J Bone Joint Surg Am. 1993;75:532–53.

    Article  CAS  PubMed  Google Scholar 

  4. Johnson LL. Arthroscopic abrasion arthroplasty historical and pathologic perspective: present status. Arthroscopy. 1986;2:54–69.

    Article  CAS  PubMed  Google Scholar 

  5. Pridie KH. A method of resurfacing osteoarthritic knee joints. J Bone Joint Surg Am. 1959;41-B:618–9.

    Google Scholar 

  6. Ficat RP, Ficat C, Gedeon P, Toussaint JB. Spongialization: a new treatment for diseased patellae. Clin Orthop Relat Res. 1979; (144):74–83.

    Google Scholar 

  7. Steadman JR, Miller BS, Karas SG, Schlegel TF, Briggs KK, Hawkins RJ. The microfracture technique in the treatment of full-thickness chondral lesions of the knee in National Football League players. J Knee Surg. 2003;16:83–6.

    PubMed  Google Scholar 

  8. Jung Y, Kim SH, Kim YH, Kim SH. The effects of dynamic and three-dimensional environments on chondrogenic differentiation of bone marrow stromal cells. Biomed Mater. 2009;4(5):055009. https://doi.org/10.1088/1748-6041/4/5/055009. Epub 2009 Sep 25.

    Article  PubMed  CAS  Google Scholar 

  9. Schätti O, Grad S, Goldhahn J, Salzmann G, Li Z, Alini M, Stoddart MJ. A combination of shear and dynamic compression leads to mechanically induced chondrogenesis of human mesenchymal stem cells. Eur Cell Mater. 2011;22:214–25.

    Article  PubMed  Google Scholar 

  10. Erggelet C, Neumann K, Endres M, Haberstroh K, Sittinger M, Kaps C. Regeneration of ovine articular cartilage defects by cell-free polymer-based implants. Biomaterials. 2007;28:5570–80.

    Article  CAS  PubMed  Google Scholar 

  11. Frisbie DD, Trotter GW, Powers BE, Rodkey WG, Steadman JR, Howard RD, Park RD, McIlwraith CW. Arthroscopic subchondral bone plate microfracture technique augments healing of large chondral defects in the radial carpal bone and medial femoral condyle of horses. Vet Surg. 1999;28:242–55.

    Article  CAS  PubMed  Google Scholar 

  12. Steadman JR, Rodkey WG, Briggs KK. Microfracture to treat full-thickness chondral defects: surgical technique, rehabilitation, and outcomes. J Knee Surg. 2002;15:170–6.

    PubMed  Google Scholar 

  13. Chen H, Sun J, Hoemann CD, Lascau-Coman V, Ouyang W, McKee MD, Shive MS, Buschmann MD. Drilling and microfracture lead to different bone structure and necrosis during bone-marrow stimulation for cartilage repair. J Orthop Res. 2009;27(11):1432–8.

    Article  PubMed  Google Scholar 

  14. Erggelet C, Sittinger M, Lahm A. The arthroscopic implantation of autologous chondrocytes for the treatment of full-thickness cartilage defects of the knee joint. Arthroscopy. 2003;19(1):108–10.

    Article  PubMed  Google Scholar 

  15. Erggelet C, Mandelbaum BR. Operative treatment of articular cartilage defects. In: Principles of cartilage repair. Steinkopff; Darmstadt 2008. p. 39–72.

    Google Scholar 

  16. Driesang IM, Hunziker EB. Delamination rates of tissue flaps used in articular cartilage repair. J Orthop Res. 2000;18(6):909–11.

    Article  CAS  PubMed  Google Scholar 

  17. Hunziker EB, Stähli A. Surgical suturing of articular cartilage induces osteoarthritis-like changes. Osteoarthr Cartil. 2008;16(9):1067–73. Epub 2008 Mar 4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Drobnic M, Radosavljevic D, Ravnik D, Pavlovcic V, Hribernik M. Comparison of four techniques for the fixation of a collagen scaffold in the human cadaveric knee. Osteoarthr Cartil. 2006;14(4):337–44. Epub 2006 Jan 6.

    Article  CAS  PubMed  Google Scholar 

  19. Knecht S, Erggelet C, Endres M, Sittinger M, Kaps C, Stüssi E. Mechanical testing of fixation techniques for scaffold-based tissue-engineered grafts. J Biomed Mater Res B Appl Biomater. 2007;83((1):50–7.

    Article  CAS  Google Scholar 

  20. Zelle S, Zantop T, Schanz S, Petersen W. Arthroscopic techniques for the fixation of a three-dimensional scaffold for autologous chondrocyte transplantation: structural properties in an in vitro model. Arthroscopy. 2007;23(10):1073–8.

    Article  PubMed  Google Scholar 

  21. Shive MS, Stanish WD, McCormack R, Forriol F, Mohtadi N, Pelet S, Desnoyers J, Méthot S, Vehik K, Restrepo A. BST-CarGel® treatment maintains cartilage repair superiority over microfracture at 5 years in a multicenter randomized controlled trial. Cartilage. 2015;6(2):62–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Stanish WD, McCormack R, Forriol F, Mohtadi N, Pelet S, Desnoyers J, Restrepo A, Shive MS. Novel scaffold-based BST-CarGel treatment results in superior cartilage repair compared with microfracture in a randomized controlled trial. J Bone Joint Surg Am. 2013;95(18):1640–50.

    Article  PubMed  Google Scholar 

  23. Gobbi A, Scotti C, Karnatzikos G, Mudhigere A, Castro M, Peretti GM. One-step surgery with multipotent stem cells and Hyaluronan-based scaffold for the treatment of full-thickness chondral defects of the knee in patients older than 45 years. Knee Surg Sports Traumatol Arthrosc. 2017;25(8):2494–501.

    Article  PubMed  Google Scholar 

  24. Farr J, Yao JQ. Chondral defect repair with particulated juvenile cartilage allograft. Cartilage. 2011;2(4):346–53.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Patrascu JM, Freymann U, Kaps C, Poenaru DV. Repair of a post-traumatic cartilage defect with a cell-free polymer-based cartilage implant: a follow-up at two years by MRI and histological review. J Bone Joint Surg Br. 2010;92(8):1160–3.

    Article  CAS  PubMed  Google Scholar 

  26. Siclari A, Mascaro G, Gentili C, Kaps C, Cancedda R, Boux E. Cartilage repair in the knee with subchondral drilling augmented with a platelet-rich plasma-immersed polymer-based implant. Knee Surg Sports Traumatol Arthrosc. 2013;22:1225–34.

    Article  PubMed  Google Scholar 

  27. Cole BJ, Fortier LA, Cook JL, Cross J, Chapman H-S, Roller B. The use of micronized allograft articular cartilage (biocartilage) and platelet rich plasma to augment marrow stimulation in an equine model of articular cartilage defects. Orthop J Sports Med. 2015; 44(9):2366–74.

    Google Scholar 

  28. Sharma B, Fermanian S, Gibson M, Unterman S, Herzka DA, Cascio B, Coburn J, Hui AY, Marcus N, Gold GE, Elisseeff JH. Human cartilage repair with a photoreactive adhesive-hydrogel composite. Sci Transl Med. 2013;5(167):167.

    Article  CAS  Google Scholar 

  29. Anders S, Volz M, Frick H, Gellissen J. A randomized, controlled trial comparing autologous matrix-induced chondrogenesis (AMIC®) to microfracture: analysis of 1- and 2-year follow-up data of 2 centers. Open Orthop J. 2013;7:133–43.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gille J, Behrens P, Volpi P, de Girolamo L, Reiss E, Zoch W, Anders S. Outcome of Autologous Matrix Induced Chondrogenesis (AMIC) in cartilage knee surgery: data of the AMIC Registry. Arch Orthop Trauma Surg. 2013;133(1):87–93.

    Article  CAS  PubMed  Google Scholar 

  31. Mithoefer K, Williams R Jr, Warren RF, Potter HG, Spock CR, Jones EC, Wickiewicz TL, Marx RG. The microfracture technique for the treatment of articular cartilage lesions in the knee. A prospective cohort study. J Bone Joint Surg Am. 2005;87:1911–20.

    Article  PubMed  Google Scholar 

  32. Kreuz PC, Erggelet C, Steinwachs MR, Krause SJ, Lahm A, Niemeyer P, Ghanem N, Uhl M, Sudkamp N. Is microfracture of chondral defects in the knee associated with different results in patients aged 40 years or younger? Arthroscopy. 2006;22:1180–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Erggelet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Erggelet, C. (2018). Augmented Marrow Stimulation for Cartilage Repair. In: Farr, J., Gomoll, A. (eds) Cartilage Restoration. Springer, Cham. https://doi.org/10.1007/978-3-319-77152-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77152-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77151-9

  • Online ISBN: 978-3-319-77152-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics