Skip to main content

A Computer Vision Based Algorithm for Obstacle Avoidance

  • Conference paper
  • First Online:
Book cover Information Technology - New Generations

Abstract

This paper presents the implementation of an algorithm based on elementary computer vision techniques that allow an UAV (Unmanned Aerial Vehicle) to identify obstacles (including another UAV) and to avoid them, using only a trivial 5MP camera and applying six mathematical treatments on image. The proposed algorithm of this paper was applied in a drone in real flight. The algorithm proved to be quite efficient both in identifying obstacles ahead and in transposing the same obstacles. Another interesting result is that the algorithm can identify small mobile obstacles and avoid collisions, for example other drones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.R. Davies, Machine Vision: Theory, Algorithms, Practicalities, 2005, ISBN 012206092X, 9780122060922. (2005).

    Google Scholar 

  2. M.D.L. Santos, E.H. Shiguemori, R.L.M. Mota, A.C.B. Ramos, Change detection in satellite images using self-organizing maps, in 12th International Conference on Information Technology—New Generations (ITNG 2015), Las Vegas, Nevada, USA (2015), pp. 662–667

    Google Scholar 

  3. R.C. Gonzales, E.R. Woods, Processamento de Imagens Digitais (in Portuguese) (São Paulo, Brazil, 2000)

    Google Scholar 

  4. A. Bueno, Fundamentos da Computacão Gráfica (in Portuguese) (Pontifıcia Universidade Catolica, Brasil, Rio de Janeiro, 2011)

    Google Scholar 

  5. D.H. Ballard, C.M. Brown, Computer Vision (Prentice Hall, New Jersey, 1982)

    Google Scholar 

  6. A.M. Waxman, J.J. LeMoigne, B. Scinvasan, A visual navigation system for autonomous land vehicles. IEEE J. Robot. Autom. RA-3(2), 124–141 (1987)

    Article  Google Scholar 

  7. C. Thrope, M.H. Hebert, T. Kanade, S.A. Shafer, Vision and navigation for the Carnegie-Mellon Navilab. IEEE Trans. Pattern. Anal. Mach. Intell. PAM1-10(3), 362–373 (1988)

    Article  Google Scholar 

  8. A. Davison, Real-time simultaneous localization and mapping with a single camera. IEEE ICCV 2, 1403–1410 (2003)

    Google Scholar 

  9. M. Lee, S. Hur, Y. Park, An obstacle classification method using multi feature comparison based on 2D LIDAR database, 2015, Information Technology—New Generations (ITNG 2015), in 12th International Conference on, Las Vegas, Nevada, USA (2015), pp. 674–679

    Google Scholar 

  10. S. Garćıa, M.E. Lopez, R. Barea, L.M. Bergasa, A. Gomez, E.J. Molinos, International Conference on Indoor SLAM for Micro Aerial Vehicles Control Using Monocular Camera and Sensor Fusion, Autonomous Robot Systems and Competitions (ICARSC 2016) (2016)

    Google Scholar 

  11. J.T. Amenyo, D. Phelps, O. Oladipo, F. Sewovoe-Ekuoe, S. Jadoo-nanan, S. Jadoonanan, T. Tabassum, S. Gnabode, T.D. Sherpa, M. Falzone, A. Hossain, A. Kublal, MedizDroids Project: ultra-low cost, low-altitude, affordable and sustainable UAV multicopter drones for mosquito vector control in malaria disease management, in IEEE Global Humanitarian Technology Conference (GHTC 2014) (2014)

    Google Scholar 

  12. M.F.A. Rahman, A.I.C. Ani, S.Z. Yahaya, Z. Hussain, R. Boudville, A. Ahmad, Implementation of Quadcopter as a teaching tool to enhance engineering courses, in IEEE 8th International Conference on Engineering Education (ICEED 2016) (2016)

    Google Scholar 

  13. Ascending Technologies, GmbH, http://www.asctec.de. Accessed 13 March 2017

  14. K. Sreenath, T. Lee, V. Kumar, geometric control and differential flatness of a quadrotor UAV with a cable-suspended load, in IEEE Conference on Decision and Control (CDC) (Florence, Italy, 2013), pp. 2269–2274

    Google Scholar 

  15. Ubuntu Desktop 14.04 LT, https://www.ubuntu.com, Accessed 13 March 2017

  16. OpenCV 3.2, http://opencv.org. Accessed 13 March 2017

  17. G. Bradski, A. Kaehler, Learning OpenCV: Computer Vision with the Open CV Library (O’Reilly)

    Google Scholar 

  18. ROS Indigo (Robot Operation System), http://www.ros.org. Accessed 13 March 2017

  19. Pixhawk, https://pixhawk.org/. Accessed 13 March 2017

  20. MavLink, http://www.mavlink.org/. Accessed 13 March 2017

  21. Raspberry pi, https://www.raspberrypi.org. Accessed 13 March 2017

  22. L.F. Lima (2010), https://lazarolima.wordpress.com/2010/08/19/proces-sando-imagens-em-grayscale-e-negativo-em-c/(in Portuguese). Accessed 13 March 2017

  23. OpenCV 2.4.13.2 documentation, Blur, http://docs.opencv.org/2.4/modules/imgproc/doc/filtering.html?highlight=blurcv2.blur. Accessed 27 April 2017

  24. OpenCV 2.4.13.2 documentation (imgproc module), Image Processing, Canny Edge Detector, http://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/canny_detector/cannydetector.html?highlight=canny. Accessed 27 April 2017

  25. OpenCV 2.4.13.2 documentation, Structural Analysis and Shape De-scriptors, http://docs.opencv.org/2.4/modules/imgproc/doc/structural_analysis_and_shapedescriptors.html?highlight= findcontourscv2.findConto.urs. Accessed 27 April 2017

  26. OpenCV 2.4.13.2 documentation, Basic Drawing, http://docs.opencv.org/2.4/doc/tutorials/core/basic_geometric_drawing/basic_geometric_drawing.html?highlight=scalar. Accessed 27 April 2017

  27. OpenCV 2.4.13.2 documentation, drawContours, http://docs.opencv.org/2.4/modules/imgproc/doc/structural_ analysis_and_shape_descriptors.html?highlight=drawcontoursdrawcon tours. Accessed 27 April 2017

  28. The Bored Engineers (https://theboredengineers.com/), The Quadcopter: Control the Orientation, https://theboredengineers.com/2012/05/30/the-quadcopter-basics/. Accessed 11 April 2017

  29. Experiment, Drone Flight, https://youtube/JA_oQORdcjs. Accessed 27 April 2017

    Google Scholar 

  30. The Bebop Parrot Drone website, https://www.parrot.com/us/drones/parrotbebop2. Accessed 05 May 2017

  31. CAPES, http://www.capes.gov.br. Accessed 13 March 2017

Download references

Acknowledgement

We thank the Black Bee team of the Federal University of Itabubá that made the drones available and operated during the experiments.

This work was funded by Capes—Coordination of Improvement of Higher Level Personnel [31].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wander Mendes Martins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Martins, W.M., Braga, R.G., Ramos, A.C.B., Mora-Camino, F. (2018). A Computer Vision Based Algorithm for Obstacle Avoidance. In: Latifi, S. (eds) Information Technology - New Generations. Advances in Intelligent Systems and Computing, vol 738. Springer, Cham. https://doi.org/10.1007/978-3-319-77028-4_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-77028-4_73

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-77027-7

  • Online ISBN: 978-3-319-77028-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics