Skip to main content

Unsupervised Habitual Activity Detection in Accelerometer Data

  • Chapter
  • First Online:
Mechatronics and Machine Vision in Practice 3

Abstract

The activity of the user is one example of context information which can help computer applications respond better to the needs of the user in a seamless manner based on the situation without needing explicit instruction. With potential applications in many fields such as health-care, assisted living and sports, there has been considerable interest and work done in the area of activity recognition. Currently, these works have resulted in various successful approaches capable of recognizing common basic activities such as walking, sitting, standing and lying, mostly through supervised learning. However, supervised learning approach would be limited in that it requires labeled data for prior learning. It would be difficult to provide sufficient amounts of labeled data that is representative of free-living activities. To address these limitations, this research proposes motif discovery as an unsupervised activity recognition approach. Habitual activities would be detected by finding motifs, similar repeating subsequences within the collected accelerometer data. A 3D accelerometer sensor worn on the dominant arm is used to record, model and recognize different activities of daily living. The raw accelerometer data is then processed and discretized in order to perform motif discovery. Results have shown motif discovery to increase the performance in varying degrees (5–19%) depending on the discretization technique used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ajmera, J., H. Bourlard, I. Lapidot, and I.A. McCowan. 2002. Unknown-multiple speaker clustering using hmm. IDIAP: Technical Representative.

    Google Scholar 

  2. Altun, K., B. Barshan, and O. Tuncel. 2010. Comparative study on classifying human activities with miniature inertial and magnetic sensors. Pattern Recognition 43 (10): 3605–3620.

    Article  MATH  Google Scholar 

  3. Bao, L., and S.S. Intille. 2004. Activity recognition from user-annotated acceleration data. In: Pervasive computing, 1–17. Springer.

    Google Scholar 

  4. Bonomi, A.G., A. Goris, B. Yin, K.R. Westerterp, et al. 2009. Detection of type, duration, and intensity of physical activity using an accelerometer. Medicine and Science in Sports and Exercise 41 (9): 1770–1777.

    Article  Google Scholar 

  5. Chen, L., J. Hoey, C. Nugent, D. Cook, and Z. Yu. 2012. Sensor-based activity recognition. Systems, Man, and Cybernetics, Part C: Applications and Reviews, Transactions on IEEE 42 (6): 790–808.

    Article  Google Scholar 

  6. Ermes, M., J. Parkka, J. Mantyjarvi, and I. Korhonen. 2008. Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions. Information Technology in Biomedicine, Transactions on IEEE 12 (1): 20–26.

    Article  Google Scholar 

  7. Fuad, M.M.M., and P.F. Marteau. 2013. Towards a faster symbolic aggregate approximation method. arXiv preprint arXiv:1301.5871.

  8. Giegerich, R., and S. Kurtz. 1997. From ukkonen to mccreight and weiner: A unifying view of linear-time suffix tree construction. Algorithmica 19 (3): 331–353.

    Article  MathSciNet  MATH  Google Scholar 

  9. Gusfield, D. 1997. Algorithms on strings, trees and sequences: Computer science and computational biology. Cambridge University Press.

    Google Scholar 

  10. Hamid, R., and S. Maddi, A. Bobick, I. Essa. 2006. Unsupervised analysis of activity sequences using event-motifs. In: Proceedings of the 4th ACM international workshop on Video surveillance and sensor networks, 71–78. ACM.

    Google Scholar 

  11. Karantonis, D.M., M.R. Narayanan, M. Mathie, N.H. Lovell, and B.G. Celler. 2006. Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring. Information Technology in Biomedicine, Trans-actions on IEEE 10 (1): 156–167.

    Article  Google Scholar 

  12. Kasabach, C., C. Pacione, M. Des, and A. Teller, D. Andre. 2002. Why the upper arm? Factors contributing to the design of an accurate and comfortable, wearable body monitor. In Whitepaper, Bodymedia, Inc. Citeseer.

    Google Scholar 

  13. Lee, M.S., J.G. Lim, K.R. Park, and D.S. Kwon. 2009. Unsupervised clustering for abnormality detection based on the tri-axial accelerometer. ICCAS-SICE 2009: 134–137.

    Google Scholar 

  14. Lin, J., E. Keogh, and S. Lonardi, P. Patel. 2002. Finding motifs in time series. In Proceedings of the 2nd workshop on temporal data mining, 53–68.

    Google Scholar 

  15. Logan, B., J. Healey, M. Philipose, and E.M. Tapia, S. Intille. 2007. A long-term evaluation of sensing modalities for activity recognition. In UbiComp 2007: Ubiquitous computing, 483–500. Springer.

    Google Scholar 

  16. Mathie, M., B.G. Celler, N.H. Lovell, and A. Coster. 2004. Classification of basic daily movements using a triaxial accelerometer. Medical & Biological Engineering & Computing 42 (5): 679–687.

    Article  Google Scholar 

  17. Mueen, A., and E. Keogh. 2010. Online discovery and maintenance of time series motifs. In: Proceedings of the 16th ACM SIGKDD international conference on knowledge discovery and data mining, 1089–1098. ACM.

    Google Scholar 

  18. Nguyen, A., and D. Moore, I. McCowan. 2007. Unsupervised clustering of free-living human activities using ambulatory accelerometry. In Engineering in medicine and biology society, 2007. EMBS 2007. 29th annual international conference of the IEEE, 4895–4898, IEEE.

    Google Scholar 

  19. Parkka, J., M. Ermes, P. Korpipaa, J. Mantyjarvi, J. Peltola, and I. Korhonen. 2006. Activity classification using realistic data from wearable sensors. Information Technology in Biomedicine, Transactions on IEEE 10 (1): 119–128.

    Article  Google Scholar 

  20. Siirtola, P., P. Laurinen, E. Haapalainen, and J. Roning, H. Kinnunen. 2009. Clustering-based activity classification with a wrist-worn accelerometer using basic features. In Computational intelligence and data mining, 2009. CIDM’09. IEEE symposium on IEEE, 95–100.

    Google Scholar 

  21. Stikic, M., D. Larlus, S. Ebert, and B. Schiele. 2011. Weakly supervised recognition of daily life activities with wearable sensors. Pattern Analysis and Machine Intelligence, Transactions on IEEE 33 (12): 2521–2537.

    Article  Google Scholar 

  22. Trabelsi, D., S. Mohammed, and Y. Amirat, L. Oukhellou. 2012. Activity recognition us-ing body mounted sensors: An unsupervised learning based approach. In Neural networks (IJCNN), The 2012 international joint conference on IEEE, 1–7.

    Google Scholar 

  23. Trabelsi, D., S. Mohammed, F. Chamroukhi, L. Oukhellou, and Y. Amirat. 2013. An un-supervised approach for automatic activity recognition based on hidden markov model regression. Automation Science and Engineering, Transactions on IEEE 10 (3): 829–835.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn Domingo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Domingo, C., See, S., Legaspi, R. (2018). Unsupervised Habitual Activity Detection in Accelerometer Data. In: Billingsley, J., Brett, P. (eds) Mechatronics and Machine Vision in Practice 3. Springer, Cham. https://doi.org/10.1007/978-3-319-76947-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76947-9_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76946-2

  • Online ISBN: 978-3-319-76947-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics