Skip to main content

Materials that Move

  • Chapter
  • First Online:
Materials that Move

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSPOLIMI))

Abstract

Kinetic materials range from well-known shape memory alloys to more “exotic” materials such as ferrogels and shape memory ceramics. The common characteristic of all these smart materials is their ability to undergo a predetermined shape change as a response to an external stimulus such as light, electricity, humidity, or heat. The shape change can be reversible or irreverbible. This chapter attempts to categorize kinetic materials according to two features: based on the material type (e.g. alloys, polymers, gels) and based on the stimulus they respond to (e.g. thermoresponsive, magnetostrictive, or electroactive). After explaining these categories, details of the most important kinetic materials are discussed. This chapter focuses mainly on the mechanismas that lead to a shape with an explanation of the underlying material science principles. Some key terms are defined and important properties of shape memory materials (alloys and polymers) are listed. A brief history on the discovery and development of certain kinetic materials is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arndt, K. F., Schmidt, T., Richter, A., & Kuckling, D. (2004). High response smart gels: Synthesis and application. In Macromolecular Symposia (Vol. 207, No. 1, pp. 257–268). Wiley VCH Verlag.

    Article  CAS  Google Scholar 

  • Bar-Cohen, Y. (2002). Electroactive polymers as artificial muscles: A review. Journal of Spacecraft and Rockets, 39(6), 822–827.

    Article  CAS  Google Scholar 

  • Behl, M., Langer, R., & Lendlein, A. (2007). Intelligent materials: Shape-memory polymers. Intelligent Materials, 301–316.

    Google Scholar 

  • Behl, M., & Lendlein, A. (2010). Overview of shape-memory polymers. In L. J & D. S (Eds.), Shape-memory polymers and multifunctional composites. Boca Raton: CRC Press.

    Google Scholar 

  • Bengisu, M. (2001). Engineering ceramics. Heidelberg: Springer.

    Chapter  Google Scholar 

  • Bengisu, M. (2016). Illustrating technology. https://www.youtube.com/watch?v=nMBayqVVFEE.

  • Bhandari, B., Lee, G. Y., & Ahn, S. H. (2012). A review on IPMC material as actuators and sensors: Fabrications, characteristics and applications. International Journal of Precision Engineering and Manufacturing, 13(1), 141–163.

    Article  Google Scholar 

  • Calleja, G., Jourdan, A., Ameduri, B., & Habas, J. P. (2013). Where is the glass transition temperature of poly (tetrafluoroethylene)? A new approach by dynamic rheometry and mechanical tests. European Polymer Journal, 49(8), 2214–2222.

    Article  CAS  Google Scholar 

  • Chopra, I., & Sirohi, J. (2013). Smart structures theory. Cambridge: Cambridge University Press.

    Google Scholar 

  • Christian, J. W. (2002). The theory of transformations in metals and alloys. Oxford: Pergamon.

    Google Scholar 

  • Chun, B. C., Cha, S. H., Chung, Y. C., & Cho, J. W. (2002). Enhanced dynamic mechanical and shape-memory properties of a poly (ethylene terephthalate)–poly (ethylene glycol) copolymer crosslinked by maleic anhydride. Journal of Applied Polymer Science, 83(1), 27–37.

    Article  CAS  Google Scholar 

  • Citerin, J., & Kheddar, A. (2008). Electro-active polymer actuators for tactile displays. In Sense of touch and its rendering: Progress in haptics research (Vol. 45, pp. 131–154).

    Google Scholar 

  • Claeyssen, F., Lhermet, N., LeLetty, R., & Bouchilloux, P. (1997). Actuators, transducers and motors based on giant magnetostrictive materials. Journal of Alloys and Compounds, 258(1–2), 61–73.

    Article  CAS  Google Scholar 

  • Clark, N. A. (2013). Soft-matter physics: Ferromagnetic ferrofluids. Nature, 504(7479), 229–230.

    Article  CAS  Google Scholar 

  • Concept Zero (2017) A Brief History of ferrofluid. https://www.czferro.com/blog/2014/10/27/history-of-ferrofluids. Accessed September 22, 2017.

  • Duclos, T. G., Carlson, J. D., Chrzan, M. J., & Coulter, J. P. (1992). Electrorheological fluids—Materials and applications. In Intelligent structural systems (pp. 213–241). Netherlands: Springer.

    Google Scholar 

  • Duerig, T. W., Melton, K. N., Stöckel, D., & Wayman, C. M. (1990). Engineering aspects of shape memory alloys. London: Butterworth-Heinemann.

    Google Scholar 

  • Duff, A. W. (1896). The viscosity of polarized dielectrics. Physical Review (Series I), 4(1), 23.

    Article  Google Scholar 

  • Dynalloy. (2016). Technical characteristics of Flexinol. http://www.dynalloy.com/tech_sheets.php. Accessed November 23, 2017.

  • Ferrotec (2017) Magnetic liquid technology. https://ferrofluid.ferrotec.com/technology. Accessed September 21, 2017.

  • Gaudenzi, P. (2009). Smart structures: Physical behaviour, mathematical modelling and applications. New Jersey: Wiley

    Google Scholar 

  • Gołdasz, J., & Sapiński, B. (2015). Insight into magnetorheological shock absorbers. New York: Springer International Publishing.

    Book  Google Scholar 

  • Han, X. J., Dong, Z. Q., Fan, M. M., Liu, Y., Li, J. H., Wang, Y. F., et al. (2012). pH-induced shape-memory polymers. Macromolecular Rapid Communications, 33(12), 1055–1060.

    Article  CAS  Google Scholar 

  • Hathaway, K. B., & Clark, A. E. (1993). Magnetostrictive materials. MRS Bulletin, 18(4), 34–41.

    Article  CAS  Google Scholar 

  • Hodgson, D. E., Ming, W. H., & Biermann, R. J. (1990). Shape memory alloys. US: In ASM Handbook: ASM International.

    Google Scholar 

  • Huang, W. M., Ding, Z., Wang, C. C., Wei, J., Zhao, Y., & Purnawali, H. (2010). Shape memory materials. Materials Today, 13(7–8), 54–61.

    Article  CAS  Google Scholar 

  • Huang, W. M., Zhao, Y., Wang, C. C., Ding, Z., Purnawali, H., Tang, C., & Zhang, J. L. (2012). Thermo/chemo-responsive shape memory effect in polymers: A sketch of working mechanisms, fundamentals and optimization. Journal of Polymer Research, 19(9).

    Google Scholar 

  • Irie, M. (1998). Shape memory polymers. In K. Otsuka & C. M. Wayman (Eds.), Shape memory materials (pp. 203–219). Cambridge: Cambridge University Press.

    Google Scholar 

  • Jani, J. M., Leary, M., Subic, A., & Gibson, M. A. (2014). A review of shape memory alloy research, applications and opportunities. Materials and Design, 56, 1078–1113.

    Article  Google Scholar 

  • Janocha, H. (1999). Adaptronics and smart structures. Springer-Verlag Berlin Heidelberg.

    Google Scholar 

  • Jee, S. C. (2010). Development of morphing aircraft structure using SMP (No. AFIT/GSE/ENV/10-M02). Air Force Institute of Technology. Wright-Patterson AFB OH School of Engineering.

    Google Scholar 

  • Jenner, A. G., & Lord, D. G. (2003). Magnetostriction. In K. Worden, W. A. Bullough, & J. Haywood (Eds.), Smart technologies (pp. 171–192). Singapore: World Scientific Publishing.

    Chapter  Google Scholar 

  • Jiang, H. Y., & Schmidt, A. M. (2010). The structural variety of shape-memory polymers. In J. Leng, & S. Du (Ed.), Shape-memory polymers and multifunctional composites (pp. 21–64). Boca Raton: CRC Press.

    Chapter  Google Scholar 

  • Jinlian, H. U. (2007). Shape memory polymers and textiles. Netherlands: Elsevier

    Google Scholar 

  • Jolly, M. R. (1999, November 30–December 02). Properties and applications of magnetorheological fluids. Paper presented at the 3rd Symposium on Smart Materials held at the 1999 MRS Fall Meeting, Boston, Ma.

    Google Scholar 

  • Jones, R. W. (2009, December). Artificial muscles: Dielectric electroactive polymer-based actuation. In Computer and Electrical Engineering, 2009. ICCEE’09. Second International Conference on (Vol. 2, pp. 209–216). IEEE.

    Google Scholar 

  • Kim, H. C., Yoo, Y. I., & Lee, J. J. (2009). Two-way shape memory effect induced by repetitive compressive loading cycles. Smart Materials and Structures, 18(9), 1–10.

    Google Scholar 

  • Kim, B., & Peppas, N. A. (2002). Synthesis and characterization of pH-sensitive glycopolymers for oral drug delivery systems. Journal of Biomaterials Science-Polymer Edition, 13(11), 1271–1281.

    Article  CAS  Google Scholar 

  • Klesa, J. (2009). Experimental evaluation of the properties of Veriflex shape memory polymer. In Konference Studentské Tvurci ˇCinnosti (STC’09).

    Google Scholar 

  • König, W. (1885). Bestimmung einiger Reibungscoëfficienten und Versuche über den Einfluss der Magnetisirung und Electrisirung auf die Reibung der Flüssigkeiten. Annalen der Physik, 261(8), 618–625.

    Article  Google Scholar 

  • Kretzer, M. (2016). Information materials: Smart materials for adaptive architecture. New York: Springer.

    Google Scholar 

  • Kumar, P. K., & Lagoudas, D. C. (2008). Introduction to shape memory materials. In D. C. Lagoudas (Ed.), Shape memory materials, modeling and engineering applications (pp. 1–51). New York: Springer.

    Google Scholar 

  • Lai, A., Du, Z. H., Gan, C. L., & Schuh, C. A. (2013). Shape memory and superelastic ceramics at small scales. Science, 341(6153), 1505–1508.

    Article  CAS  Google Scholar 

  • Lendlein, A., Schmidt, A. M., Schroeter, M., & Langer, R. (2005). Shape-memory polymer networks from oligo(ε-caprolactone)dimethacrylates. Journal of Polymer Science Part A: Polymer Chemistry, 43, 1369.

    Article  CAS  Google Scholar 

  • Leo, D. J. (2007). Engineering analysis of smart material systems. New Jersey: Wiley.

    Book  Google Scholar 

  • Lexcellent, C. (2013). Shape-memory alloys handbook. New Jersey: Wiley.

    Book  Google Scholar 

  • Li, F. K., Hou, J. N., Zhu, W., Zhang, X., Xu, M., Luo, X. L., et al. (1996). Crystallinity and morphology of segmented polyurethanes with different soft-segment length. Journal of Applied Polymer Science, 62(4), 631–638.

    Article  CAS  Google Scholar 

  • Li, F. K., Zhu, W., Zhang, X., Zhao, C. T., & Xu, M. (1999). Shape memory effect of ethylene-vinyl acetate copolymers. Journal of Applied Polymer Science, 71(7), 1063–1070.

    Article  CAS  Google Scholar 

  • Li, G. (2015). Self-healing composites: Shape memory polymer-based structures: Self-healing composites (pp. 1–370). New Jersey: Wiley.

    Google Scholar 

  • Lubrizol. (2016). TecoflexTM TPU Material data sheet. https://www.lubrizol.com/en/Life-Sciences/Products/Tecoflex-TPU. Accessed June 07, 2017.

  • Luo, X. L., Zhang, X. Y., Wang, M. T., Ma, D. H., Xu, M., & Li, F. K. (1997). Thermally stimulated shape-memory behavior of ethylene oxide ethylene terephthalate segmented copolymer. Journal of Applied Polymer Science, 64(12), 2433–2440.

    Article  CAS  Google Scholar 

  • Mavroidis, C. (2002). Development of advanced actuators using shape memory alloys and electrorheological fluids. Research in Nondestructive Evaluation, 14(1), 1–32.

    Article  Google Scholar 

  • McClung, A. J. W., Tandon, G. P., & Baur, J. W. (2013). Deformation rate-, hold time-, and cycle-dependent shape-memory performance of Veriflex-E resin. Mechanics of Time-Dependent Materials, 17(1), 39–52.

    Article  CAS  Google Scholar 

  • Meng, H., & Li, G. Q. (2013). A review of stimuli-responsive shape memory polymer composites. Polymer, 54(9), 2199–2221.

    Article  CAS  Google Scholar 

  • Meng, Q. H., & Hu, J. L. (2009). A review of shape memory polymer composites and blends. Composites Part A-Applied Science and Manufacturing, 40(11), 1661–1672.

    Article  Google Scholar 

  • Meng, Y., Jiang, J. S., & Anthamatten, M. (2016). Body temperature triggered shape-memory polymers with high elastic energy storage capacity. Journal of Polymer Science Part B-Polymer Physics, 54(14), 1397–1404.

    Article  CAS  Google Scholar 

  • Morgan, N. B. (2004). Medical shape memory alloy applications—The market and its products. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 378(1–2), 16–23.

    Article  Google Scholar 

  • Morgan, N. B., & Friend, C. B. (2003). In K. Worden, W. A. Bullough & J. Haywood (Eds.), Smart technologies (pp. 109–139). US: World Scientific.

    Google Scholar 

  • Odenbach, S. (2003). Ferrofluids—magnetically controlled suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 217(1), 171–178.

    Article  CAS  Google Scholar 

  • Oguro, K., Kawami, Y. & Takenaka H. (1992) Bending of an Ion-conducting polymer film electrode composite by an electric stimulus at low voltage. Trans. J. Micro-Machine Society, 5, 27–30.

    Google Scholar 

  • Ohm, C., Brehmer, M., & Zentel, R. (2012). Applications of liquid crystalline elastomers. Liquid Crystal Elastomers: Materials and Applications, 250, 49–93.

    Article  CAS  Google Scholar 

  • Olabi, A. G., & Grunwald, A. (2008). Design and application of magnetostrictive materials. Materials and Design, 29(2), 469–483.

    Article  CAS  Google Scholar 

  • Papell, S. S. (1965). Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles U.S. (Patent No. 3,215,572). Washington, DC: U.S. Patent and Trademark Office.

    Google Scholar 

  • Peelamedu, S. M. (2003). Piezoelectric effect and its applications. In R. G. Driggers (Ed.), Encyclopedia of optical engineering, (pp. 2093–2111). US: Marcel Dekker.

    Google Scholar 

  • Pelrine, R., Kornbluh, R., Pei, Q., & Joseph, J. (2000). High-speed electrically actuated elastomers with strain greater than 100%. Science, 287(5454), 836–839.

    Article  CAS  Google Scholar 

  • Pretsch, T. (2010). Review on the functional determinants and durability of shape memory polymers. Polymers, 2(3), 120–158.

    Article  CAS  Google Scholar 

  • Quincke, G. (1897). Die Klebrigkeit isolierender Flüssigkeiten im constanten electrischen Felde. Annalen der Physik, 298(9), 1–13.

    Article  Google Scholar 

  • Rabinow, J. (1948). The magnetic fluid clutch. Electrical Engineering, 67(12), 1167–1167.

    Article  Google Scholar 

  • Ratna, D., & Karger-Kocsis, (2008). Recent advances in shape memory polymers and composites: A review. Journal Materials Science, 43, 254–269.

    Article  CAS  Google Scholar 

  • Reyes-Morel, P. E., Cherng, J. S., & Chen, I. W. (1988). Transformation plasticity of CeO2-stabilized tetragonal zirconia polycrystals. 2. pseudoelasticity and shape memory effect. Journal of the American Ceramic Society, 71(8), 648–657.

    Article  CAS  Google Scholar 

  • Rousseau, I. A. (2008). Challenges of shape memory polymers: A review of the progress toward overcoming SMP’s limitations. Polymer Engineering & Science, 48(11), 2075–2089.

    Article  CAS  Google Scholar 

  • Scherer, C., & Figueiredo Neto, A. M. (2005). Ferrofluids: Properties and applications. Brazilian Journal of Physics, 35(3A), 718–727.

    Article  CAS  Google Scholar 

  • Schetky, L. M. (2007). Shape-memory alloys as multifunctional materials. In M. Shahinpoor & H. J. Schneider (Eds.), Intelligent Materials (pp. 317–338). Cambridge: RCS Publishing.

    Chapter  Google Scholar 

  • Schlaak, H. F., Jungmann, M., Matysek, M., Lotz, P. (2005). Novel multilayer electrostatic solid state actuators with elastic dielectric. In Y. Bar-Cohen (Ed.), SPIE (Vol. 5759, pp. 121–133).

    Google Scholar 

  • Schmidt, C., Sarwaruddin Chowdhury, A. M., Neuking, K., & Eggeler, G. (2011). Thermo-mechanical behaviour of Shape Memory Polymers, eg, Tecoflex® by 1WE method: SEM and IR analysis. Journal of Polymer Research, 18(6), 1807–1812.

    Article  CAS  Google Scholar 

  • Segalman, D. J., Witkowski, W. R., Adolf, D. B., Shahinpoor, M. (1992). Theory and application of electrically controlled polymeric gels. International Journal of Smart Material and Structures, 1, 95–100.

    Article  CAS  Google Scholar 

  • Sheng, P., & Wen, W. (2012). Electrorheological fluids: mechanisms, dynamics, and microfluidics applications. Annual Review of Fluid Mechanics, 44, 143–174.

    Article  Google Scholar 

  • Stanway, R. (2004). Smart fluids: current and future developments. Materials Science and Technology, 20(8), 931–939.

    Article  CAS  Google Scholar 

  • Stöckel, D. (1995). The shape memory effect-phenomenon, alloys and applications. In Proceedings of Shape Memory Alloys for Power Systems EPRI (pp. 1–13), Palo Alto, CA.

    Google Scholar 

  • Sun, L., Huang, W. M., Wang, C. C., Ding, Z., Zhao, Y., Tang, C., et al. (2014). Polymeric shape memory materials and actuators. Liquid Crystals, 41(3), 277–289.

    Article  CAS  Google Scholar 

  • Tobushi, H., Hayashi, S., & Kojima, S. (1992). Mechanical-properties of shape memory polymer of polyurethane series—(basic characteristics of stress-strain-temperature relationship). JSME International Journal Series I-Solid Mechanics Strength of Materials, 35(3), 296–302.

    Article  CAS  Google Scholar 

  • Turner, T. L. (2001). Thermomechanical response of shape memory alloy hybrid composites (Report NASA/TM-2001-210656). Langley Research Center, Hampton, Virginia. https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20010024159.pdf. Accessed November 23, 2017.

  • Uchino, K. (1986). Piezoelectric and electrostrictive actuators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 33(6), 806–806.

    Google Scholar 

  • Uchino, K. (1998). Shape memory ceramics. In K. Otsuka & C. M. Wayman (Eds.), Shape memory materials (pp. 184–202). Cambridge: Cambridge University Press.

    Google Scholar 

  • Wang, X. J., & Gordaninejad, F. (2007). Magnetorheological materials and their applications. In M. Shahinpoor & H. J. Schneider (Eds.), Intelligent materials (pp. 339–385). Cambridge: RCS Publishing.

    Chapter  Google Scholar 

  • Wang, C. C., Huang, W. M., Ding, Z., Zhao, Y., & Purnawali, H. (2012). Cooling-/water-responsive shape memory hybrids. Composites Science and Technology, 72(10), 1178–1182.

    Article  CAS  Google Scholar 

  • Wen, W. J., Huang, X. X., & Sheng, P. (2008). Electrorheological fluids: Structures and mechanisms. Soft Matter, 4(2), 200–210.

    Article  CAS  Google Scholar 

  • Winslow, W. M. (1949). Induced Fibration of Suspensions. Journal of Applied Physics, 20(12), 1137–1140.

    Article  CAS  Google Scholar 

  • Xiao, X. L., Kong, D. Y., Qiu, X. Y., Zhang, W. B., Liu, Y. J., Zhang, S., Leng, J. S. (2015). Shape memory polymers with high and low temperature resistant properties. Scientific Reports, 5.

    Google Scholar 

  • Xie, T. (2011). Recent advances in polymer shape memory. Polymer, 52(22), 4985–5000.

    Article  CAS  Google Scholar 

  • Yamada, Y., & Kuwabara, T. (2007). Materials for springs. Berlin: Springer Science & Business Media.

    Google Scholar 

  • Yang, Y., Chen, Y., Wei, Y., & Li, Y. (2016). 3D printing of shape memory polymer for functional part fabrication. The International Journal of Advanced Manufacturing Technology, 84(9–12), 2079–2095.

    Article  Google Scholar 

  • Yang, J. H., Chun, B. C., Chung, Y. C., & Cho, J. H. (2003). Comparison of thermal/mechanical properties and shape memory effect of polyurethane block-copolymers with planar or bent shape of hard segment. Polymer, 44(11), 3251–3258.

    Article  CAS  Google Scholar 

  • Zhang, Y. L., Jin, X. J., Hsu, T. Y., Zhang, Y. F., & Shi, J. L. (2001). Shape-memory effect in Ce-Y-TZP ceramics. Shape Memory Materials and Its Applications, 394–3, 573–576.

    Google Scholar 

  • Zhao, Q., Behl, M., & Lendlein, A. (2013). Shape-memory polymers with multiple transitions: complex actively moving polymers. Soft Matter, 9(6), 1744–1755.

    Article  CAS  Google Scholar 

  • Zrinyi, M. (2000). Intelligent polymer gels controlled by magnetic fields. Colloid & Polymer Science 278(2), 98–103.

    Article  Google Scholar 

  • Zrinyi, M. (2007). Magnetic polymeric gels as intelligent artificial muscles. In M. Zrinyi, M. Shahinpoor, & H. J. Schneider (Eds.), Intelligent materials (pp. 282–300). Cambridge: RCS Publishing.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Bengisu .

2.1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Illustrating Technology – Cappadocia window display (mp4 21.1 MB)

Shape memory sock shoes 20160705E (mp4 10.7 MB)

Single sized shoes 20160310 (mp4 8.64 MB)

Shape memory effect in 3D printed heart shaped PLA (mp4 2.45 MB)

The shape memory effect in PLA filament for 3D printing (small strain) (mp4 3.64 MB)

Shape memory effect in 3D printed PLA snake (mp4 6.08 MB)

Testing the shape memory effect in 3D printed PLA spring (II) (mp4 3.35 MB)

3D printed PLA staples with self-tightening function (mp4 11.4 MB)

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bengisu, M., Ferrara, M. (2018). Materials that Move. In: Materials that Move. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-76889-2_2

Download citation

Publish with us

Policies and ethics