Skip to main content

Postharvest Biology and Technology of Strawberry

  • Chapter
  • First Online:

Abstract

Strawberry is one of the most cultivated and consumed berry in the world. It is widely appreciated for its characteristic aroma, bright red color, juicy texture, and sweetness. Strawberries are highly perishable, with a short postharvest life. Their short postharvest life is mainly due to their susceptibility towards mechanical injury, physiological deterioration, water loss, and microbial decay. Owing to higher perishability, the shelf life enhancement of strawberry fruit is crucial and demanding. Various techniques like controlled atmosphere storage, modified atmosphere packaging, gamma irradiation, coatings, chemical treatments, etc. have been used for the shelf life enhancement of strawberry fruit.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aaby, K., Ekeberg, D., & Skrede, G. (2007). Characterization of phenolic compounds in strawberry (Fragariax ananassa) fruits by different HPLC detectors and contribution of individual compounds to total antioxidant capacity. Journal of Agricultural and Food Chemistry, 55, 4395–4406.

    Article  CAS  PubMed  Google Scholar 

  • Aaby, K., Mazur, S., Nes, A., & Skrede, G. (2012). Phenolic compounds in strawberry (Fragaria x ananassa Duch.) fruits: Composition in 27 cultivars and changes during ripening. Food Chemistry, 132, 86–97.

    Article  CAS  PubMed  Google Scholar 

  • Adamo, M., Capitani, D., Mannina, L., Cristinzio, M., Ragni, P., Tata, A., & Coppola, R. (2004). Truffles decontamination treatment by ionizing radiation. Radiation Physics and Chemistry, 71(1–2), 167–170.

    Article  CAS  Google Scholar 

  • Aday, M. S., & Caner, C. (2010). Understanding the effects of various edible coatings on the storability of fresh cherry. Packaging Technology and Science, 23, 441–456.

    Article  CAS  Google Scholar 

  • Aday, M. S., & Caner, C. (2011). The applications of ‘active packaging and chlorine dioxide’ for extended shelf life of fresh strawberries. Packaging Technology and Science, 24, 123–136.

    Article  CAS  Google Scholar 

  • Aday, M. S., Caner, C., & Rahvali, F. (2011). Effect of oxygen and carbon dioxide absorbers on strawberry quality. Postharvest Biology and Technology, 62, 179–187.

    Article  CAS  Google Scholar 

  • Aguayo, E., Jansasithorn, R., & Kader, A. A. (2006). Combined effects of 1-methylcyclopropene, calcium chloride dip, and/or atmospheric modification on quality changes in fresh-cut strawberries. Postharvest Biology and Technology, 40(3), 269–278.

    Article  CAS  Google Scholar 

  • Aharoni, Y., Hartsell, P. L., Stewart, J. K., & Young, D. K. (1979). Control of western flower thrips on harvested strawberries with acetaldehyde in air, 50% carbon dioxide or 1% oxygen. Journal of Economic Entomology, 72, 820–822.

    Article  CAS  Google Scholar 

  • Almenar, E., Hernández-Muñoz, P., Lagarón, J. M., Catalá, R., & Gavara, R. (2006). Controlled atmosphere storage of wild strawberry fruit (Fragaria vesca L.) Journal of Agricultural and Food Chemistry, 54, 86–91.

    Article  CAS  PubMed  Google Scholar 

  • Ayala-Zavala, J. F., Wang, S. Y., Wang, C. Y., & Gonzalez-Aguilar, G. A. (2004). Effect of storage temperatures on antioxidant capacity and aroma compounds in strawberry fruit. LWT-Food Science and Technology, 37, 687–695.

    Article  CAS  Google Scholar 

  • Ayala-Zavala, J. F., Wang, S. Y., Wang, C. Y., & González-Aguilar, G. A. (2005). Methyl jasmonate in conjunction with ethanol treatment increases antioxidant capacity, volatile compounds and postharvest life of strawberry fruit. European Food Research and Technology, 221, 731–738.

    Article  CAS  Google Scholar 

  • Barkai-Golan, R. (2001). Postharvest diseases of fruits and vegetables: Development and control (pp. 418–442). Elsevier Science B.V.

    Google Scholar 

  • Barrios, S., Lema, P., & Lareo, C. (2014). Modeling respiration rate of strawberry (cv. San Andreas) for modified atmosphere packaging design. International Journal of Food Properties, 17, 2039–2051.

    Article  CAS  Google Scholar 

  • Battino, M., Beekwilder, J., Denoyes-Rothan, B., Laimer, M., McDougall, G. J., & Mezzetti, B. (2009). Bioactive compounds in berries relevant to human health. Nutrition Reviews, 67, S145–S150.

    Article  PubMed  Google Scholar 

  • Bhat, R., & Stamminger, R. (2015). Preserving strawberry quality by employing novel food preservation and processing techniques—recent updates and future scope—An overview. Journal of Food Process Engineering, 38, 536–554.

    Article  Google Scholar 

  • Bohling, H. (1986). Risks and possibilities of handling and quality preservation of fruit, vegetables and cut flowers during long distance transportation C. E. C. Workshop. November 25–27, Thessaloniki, Greece.

    Google Scholar 

  • Caner, C., Aday, M. S., & Demir, M. (2008). Extending the quality of fresh strawberries by equilibrium modified atmosphere packaging. European Food Research and Technology, 227, 1575–1583.

    Article  CAS  Google Scholar 

  • Castro, I., Gonçalves, O., Teixeira, J. A., & Vicente, A. A. (2002). Comparative study of Selva and Camarosa strawberries from the commercial market. Journal of Food Science, 67, 2132–2137.

    Article  CAS  Google Scholar 

  • Cheng, G. W., & Breen, P. J. (1991). Activity of phenylalanine ammonia-lyase (PAL) and concentrations of anthocyanins and phenolics in developing strawberry fruit. Journal of the American Society for Horticultural Science, 116, 865–869.

    CAS  Google Scholar 

  • Choi, H. J., Bae, Y. S., Lee, J. S., Park, M. H., & Kim, J. G. (2016). Effects of carbon dioxide treatment and modified atmosphere packaging on the quality of long distance transporting “Maehyang” strawberry. Agricultural Sciences, 7, 813–821.

    Article  CAS  Google Scholar 

  • Cordenunsi, B. R., Genovese, M. I., Nascimento, J. R. O., Hassimotto, N. M. A., Santos, R. J., & Lajolo, F. M. (2005). Effects of temperature on the chemical composition and antioxidant activity of three strawberry cultivars. Food Chemistry, 91, 113–121.

    Article  CAS  Google Scholar 

  • Couey, H. M., & Wells, J. M. (1970). Low oxygen or high carbon dioxide atmospheres to control post-harvest decay of strawberries. Phytopathology, 60, 47–49.

    Article  Google Scholar 

  • Couey, H. M., Follstad, M. N., & Uota, M. (1966). Low-oxygen atmospheres for control of postharvest decay of fresh strawberries. Phytopathology, 56, 1339–1341.

    Google Scholar 

  • Dhital, R., Joshi, P., Becerra-Mora, N., Umagiliyage, A., Chai, T., Kohli, P., & Choudhary, R. (2017). Integrity of edible nano-coatings and its effects on quality of strawberries subjected to simulated in-transit vibrations. LWT-Food Science and Technology, 80, 257–264.

    Article  CAS  Google Scholar 

  • Emond, J. P., & Chau, K. V. (1990). Use of perforations in modified atmosphere packaging. American Society of Agricultural Engineers, paper no. 90-6512.

    Google Scholar 

  • Emond, J. P., Castaigne, F., Toupin, C. J., & Desilets, D. (1991). Mathematical modelling of gas exchange in modified atmosphere packaging. Transactions of the American Society of Agricultural Engineers, 34, 239–245.

    Article  Google Scholar 

  • Eshghi, S., Hashemi, M., Mohammadi, A., Badii, F., Hoseini, Z. M., & Ahmadi, K. (2014). Effect of nanochitosan-based coating with and without copper loaded on physicochemical and bioactive components of fresh strawberry fruit (Fragaria x ananassa Duchesne) during storage. Food and Bioprocess Technology, 7(8), 2397–2407.

    Article  CAS  Google Scholar 

  • Fan, X., Niemira, B. A., & Sokorai, K. J. B. (2003). Sensorial, nutritional and microbiological quality of fresh cilantro leaves as influenced by ionizing radiation and storage. Food Research International, 36, 713–719.

    Article  Google Scholar 

  • Fan, Y., Xu, Y., Wang, D., Zhang, L., Sun, J., Sun, L., & Zhang, B. (2009). Effect of alginate coating combined with yeast antagonist on strawberry (Fragaria×ananassa) preservation quality. Postharvest Biology and Technology, 53, 84–90.

    Article  CAS  Google Scholar 

  • FAOSTAT. FAO Statistics Division (2017). Accessed 09.09.17 http://faostat.fao.org

  • Fishman, S., Rodov, V., & Ben-Yehoshua, S. (1996). Mathematical model for perforation effect on oxygen and water vapor dynamics in modified-atmosphere packages. Journal of Food Science, 61, 956–961.

    Article  CAS  Google Scholar 

  • Freeman, S., Katan, T., & Ezra Shabi, E. (1998). Characterization of Colletotrichum species responsible for anthracnose diseases of various fruits. Plant Disease, 82(6), 596–605.

    Article  Google Scholar 

  • Garcia, L. C., Pereira, L. M., Sarantópoulos, C. I. G. L., & Hubinger, M. D. (2011). Effect of antimicrobial starch edible coating on shelf-life of fresh strawberries. Packaging Technology and Science, 25, 413–425.

    Article  CAS  Google Scholar 

  • Garcia-Viguera, C., Zafrilla, P., & Tomas-Barberan, F. T. (1998). The use of acetone as an extraction solvent for anthocyanins from strawberry fruits. Phytochemical Analysis, 9, 274–277.

    Article  CAS  Google Scholar 

  • Geraldine, R. M., Soares, N. F. F., Botrel, D. A., & Gonçalves, L. A. (2008). Characterization and effect of edible coatings on minimally processed garlic quality. Carbohydrate Polymers, 72, 403–409.

    Article  CAS  Google Scholar 

  • Giampieri, F., Tulipani, S., Alvarez-Suarez, J., Quiles, J., Mezzetti, B., & Battino, M. (2012). The strawberry: Composition, nutritional quality, and impact on human health. Nutrition, 28, 9–19.

    Article  CAS  Google Scholar 

  • Giampieri, F., Alvarez-Suarez, J. M., Mazzoni, L., Romandini, S., Bompadre, S., Diamanti, J., Capocasa, F., Mezzetti, B., Quiles, J. L., Ferreiro, M. S., Tulipani, S., & Battino, M. (2013). The potential impact of strawberry on human health. Natural Product Research, 27, 448–455.

    Article  CAS  PubMed  Google Scholar 

  • Giuggioli, N. R., Girgenti, V., Baudino, C., & Peano, C. (2015). Influence of modified atmosphere packaging storage on postharvest quality and aroma compounds of strawberry fruits in a short distribution chain. Journal of Food Processing and Preservation, 39, 3154–3164.

    Article  CAS  Google Scholar 

  • Given, N. K., Venis, M. A., & Grierson, D. (1988). Phenylalanine ammonia-lyase activity and anthocyanin synthesis in ripening in the strawberry fruit. Journal of Plant Physiology, 133, 25–30.

    Article  CAS  Google Scholar 

  • Guerreiro, A. C., Gago, C. M. L., Maria, L., Faleiro, M. L., Miguel, M. G. C., Maria, D. C., & Antunes, M. D. C. (2015). The use of polysaccharide-based edible coatings enriched with essential oils to improve shelf-life of strawberries. Postharvest Biology and Technology, 110, 51–60.

    Article  CAS  Google Scholar 

  • Guynot, M. E., Sanchis, V., Ramos, A. J., & Marin, S. (2003). Mold-free shelf-life extension of bakery products by active packaging. Journal of Food Science, 68, 2547–2552.

    Article  CAS  Google Scholar 

  • Han, C., Zhao, Y., Leonard, S. W., & Traber, M. G. (2004). Edible coatings to improve storability and enhance nutritional value of fresh and frozen strawberries (Fragaria × ananassa) and raspberries (Rubus ideaus). Postharvest Biology and Technology, 33, 67–78.

    Article  CAS  Google Scholar 

  • Harvey, J. M., Harris, C. M., Tietjen, W. J., & Seriol, T. (1980). Quality maintenance in truck shipments of California strawberries (13 pp). U.S. Department of Agriculture, Advances in Agricultural Technology AAT-W-12.

    Google Scholar 

  • Hertog, M. L. A. T. M., & Banks, N. H. (2003). Improving MAP through conceptual models. In R. Ahvenainen (Ed.), Novel food packaging techniques (pp. 351–376). Cambridge; Boca Raton: Woodhead Publishing Limited, CRC Press.

    Google Scholar 

  • Hirata, T., Makino, Y., Ishikawa, Y., Katsuura, S., & Hasekawa, Y. (1996). A theoretical model for designing modified atmosphere packaging with a perforation. Transactions of the American Society of Agricultural Engineers, 39, 1499–1504.

    Article  Google Scholar 

  • Husaini, A. M., & Abdin, M. Z. (2007). Interactive effect of light, temperature and TDZ on the regeneration potential of leaf discs of Fragaria x ananassa Duch. In Vitro Cellular and Developmental Biology-Plant, 43, 567–584.

    Article  CAS  Google Scholar 

  • Hussain, P. R., Meena, R. S., Dar, M. A., Mir, M. A., Shafi, F., & Wani, A. M. (2007). Effect of gamma-irradiation and refrigerated storage on mold growth and keeping quality of strawberry (Fragaria sp) cv. ‘Confitura’. Journal of Food Science and Technology, 44, 513–516.

    Google Scholar 

  • Hussain, P. R., Dar, M. A., Ali, M., & Wani, A. M. (2012). Effect of edible coating and gamma irradiation on inhibition of mould growth and quality retention of strawberry during refrigerated storage. International Journal of Food Science and Technology, 47(11), 2318–2324.

    Article  CAS  Google Scholar 

  • Iannetta, P. P. M., Laarhovenb, L. J., Medina-Escobar, N., James, E. K., McManuse, M. T., Davies, H. V., & Harren, F. J. M. (2006). Ethylene and carbon dioxide production by developing strawberries show a correlative pattern that is indicative of ripening climacteric fruit. Physiologia Plantarum, 127, 247–259.

    Article  CAS  Google Scholar 

  • Jiang, Y., Joyce, D. C., & Macnish, A. J. (1999). Responses to banana fruit to treatment with 1-methylcyclopropene. Plant Growth Regulation, 28, 77–82.

    Article  CAS  Google Scholar 

  • Jiang, Y., Joyce, D. C., & Terry, L. A. (2001). 1-Methylcyclopropene treatment affects strawberry fruit decay. Postharvest Biology and Technology, 23, 227–232.

    Article  CAS  Google Scholar 

  • Jimenez-Escrig, A., Santos-Hidalgo, A. B., & Saura-Calixto, F. (2006). Common sources and estimated intake of plant sterols in the Spanish diet. Journal of Agricultural and Food Chemistry, 54, 3462–3471.

    Article  CAS  PubMed  Google Scholar 

  • Jin, P., Wang, H., Zhang, Y., Huang, Y., Wang, L., & Zheng, Y. (2017). UV-C enhances resistance against gray mold decay caused by Botrytis cinerea in strawberry fruit. Scientia Horticulturae, 225, 106–111.

    Article  CAS  Google Scholar 

  • Jouki, M., & Khazaei, N. (2014). Effect of low-dose gamma radiation and active equilibrium modified atmosphere packaging on shelf life extension of fresh strawberry fruits. Food Packaging and Shelf Life, 1(1), 49–55.

    Article  Google Scholar 

  • Kader, A. A. (1991). Quality and its maintenance in relation to the post-harvest physiology of strawberry. In A. Dale & J. J. Luby (Eds.), The strawberry into the 21st century: Proceedings of the Third North American Strawberry Conference (Chap. 29, pp. 145–152). Portland: Timber Press.

    Google Scholar 

  • Kader, A. A. (1992). Modified atmospheres during transport and storage. In A. A. Kader (Ed.), Postharvest technology of horticulture crops (pp. 85–95). Berkeley: University of California, Division of Agriculture and Natural Resources, Publication 3311.

    Google Scholar 

  • Kader, A. A. (2002). Postharvest technology of horticultural crops (3rd ed.). Oakland: University of California, Division of Agriculture and Natural Resources Publication 3311.

    Google Scholar 

  • Ku, V. V. V., & Wills, R. B. H. (1999). Effect of 1-methylcyclopropene on the storage life of broccoli. Postharvest Biology and Technology, 17, 127–132.

    Article  CAS  Google Scholar 

  • Leshem, Y. Y., & Pinchasov, Y. (2000). Non-invasive photoacoustic spectroscopic determination of relative endogenous nitric oxide and ethylene content stoichiometry during the ripening of strawberries Fragaria anannasa (Duch.) and avocados Persea americana (Mill.) Journal of Experimental Botany, 51, 1471–1473.

    PubMed  CAS  Google Scholar 

  • Li, C., & Kader, A. A. (1989). Residual effects of controlled atmospheres on postharvest physiology and quality of strawberries. Journal of the American Society for Horticultural Science, 114, 629–634.

    Google Scholar 

  • Liming, X., & Tiezhong, Z. (2007). Influence of light intensity on extracted colour feature values of different maturity in strawberry. New Zealand Journal of Agricultural Research, 50, 559–565.

    Article  Google Scholar 

  • Lopes-da-Silva, F., de Pascual-Teresa, S., Rivas-Gonzalo, J. C., & Santuos-Buelga, C. (2002). Identification of anthocyanin pigments in strawberry (cv. Camarosa) by LC using DAD and ESI-MS detection. European Food Research and Technology, 214, 248–253.

    Article  CAS  Google Scholar 

  • Maas, J. L. (1984). Fungal diseases of the fruit. In J. L. Maas (Ed.), Compendium of strawberry diseases (pp. 56–78). St. Paul: American Phytopathological Society.

    Google Scholar 

  • Mahajan, P. V., Rodrigues, F. A. S., Motel, A., & Leonhard, A. (2008). Development of a moisture absorber for packaging of fresh mushrooms (Agaricus bisporous). Postharvest Biology and Technology, 48, 408–414.

    Article  CAS  Google Scholar 

  • Manning, K. (1993). Soft fruits. In G. B. Seymour, J. E. Taylor, & G. A. Tucker (Eds.), Biochemistry of fruit ripening (pp. 347–377). London: Chapman & Hall.

    Chapter  Google Scholar 

  • Maraei, R. W., & Elsawy, K. M. (2017). Chemical quality and nutrient composition of strawberry fruits treated by γ-irradiation. Journal of Radiation Research and Applied Sciences, 10, 80–87.

    Article  CAS  Google Scholar 

  • Mattila, P., Hellstrom, J., & Törrönen, R. (2006). Phenolic acids in berries, fruits, and beverages. Journal of Agricultural and Food Chemistry, 54, 7193–7199.

    Article  CAS  PubMed  Google Scholar 

  • Mingchi, L., & Kojimo, T. (2005). Study on fruit injury susceptibility of strawberry grown under different soil moisture to storage and transportation. Journal of Fruit Science, 22, 238–242.

    Google Scholar 

  • Montero, T. M., Mollá, E. M., Esteban, R. M., & Lόpez-Andréu, F. J. (1996). Quality attributes of strawberry during ripening. Scientia Horticulturae, 65, 239–250.

    Article  Google Scholar 

  • Mukkun, L., & Singh, Z. (2009). Methyl jasmonate plays a role in fruit ripening of ‘Pajaro’ strawberry through stimulation of ethylene biosynthesis. Scientia Horticulturae, 123, 5–10.

    Article  CAS  Google Scholar 

  • Nielsen, T., & Leufvén, A. (2008). The effect of modified atmosphere packaging on the quality of Honeoye and Korona strawberries. Food Chemistry, 107, 1053–1063.

    Article  CAS  Google Scholar 

  • Nunes, M. C. N., Brecht, J. K., Morais, A. M. M. B., & Sargent, S. A. (1995). Physical and chemical quality characteristics of strawberries after storage are reduced by a short delay to cooling. Postharvest Biology and Technology, 6, 17–28.

    Article  Google Scholar 

  • O’Connor, R. E., & Mitchell, G. E. (1991). Effect of irradiation on microorganisms in strawberries. International Journal of Food Microbiology, 12, 247–255.

    Article  PubMed  Google Scholar 

  • Oregel-Zamudio, E., Angoa-Pérez, M. V., Oyoque-Salcedo, G., Aguilar-González, C. N., & Mena-Violante, H. G. (2017). Effect of candelilla wax edible coatings combined with biocontrol bacteria on strawberry quality during the shelf-life. Scientia Horticulturae, 214, 273–279.

    Article  CAS  Google Scholar 

  • Pagliarulo, C., Sansone, F., Moccia, S., Russo, G. L., Aquino, R. P., Salvatore, P., Stasio, M. D., & Volpe, M. G. (2016). Preservation of strawberries with an antifungal edible coating using peony extracts in chitosan. Food and Bioprocess Technology, 9(11), 1951–1960.

    Article  CAS  Google Scholar 

  • Panda, A. K., Goyal, R. K., Godara, A. K., & Sharma, V. K. (2016). Effect of packaging materials on the shelf-life of strawberry cv. Sweet Charlie under room temperature storage. Journal of Applied and Natural Science, 8(3), 1290–1294.

    CAS  Google Scholar 

  • Perkins-Veazie, P. M., Huber, D. J., & Brecht, J. K. (1996). In vitro growth and ripening of strawberry fruit in presence of ACC, STS or propylene. Annals of Applied Biology, 128, 105–116.

    Article  CAS  Google Scholar 

  • Quaranta, H. O., & Piccini, J. L. (1984). Radiation preservation of strawberry fruit: A review. Radiation Effects, 81(1–2), 1–7.

    Article  CAS  Google Scholar 

  • Rennie, T. J., & Tavoularis, S. (2009). Perforation-mediated modified atmosphere packaging: Part I. Development of a mathematical model. Postharvest Biology and Technology, 51, 1–9.

    Article  CAS  Google Scholar 

  • Romanazzi, G., Nigro, F., Ippolito, A., & Salerno, M. (2001). Effect of short hypobaric treatments on postharvest rots of sweet cherries, strawberries and table grapes. Postharvest Biology and Technology, 22, 1–6.

    Article  Google Scholar 

  • Sandhya, S. (2010). Modified atmosphere packaging of fresh produce: Current status and future needs. LWT-Food Science and Technology, 43, 381–392.

    Article  CAS  Google Scholar 

  • Sangsuwan, J., Pongsapakworawat, T., Bangmo, P., & Sutthasupa, S. (2016). Effect of chitosan beads incorporated with lavender or red thyme essential oils in inhibiting Botrytis cinerea and their application in strawberry packaging system. LWT-Food Science and Technology, 74, 14–20.

    Article  CAS  Google Scholar 

  • Sanz, C., Olías, R., & Pérez, A. G. (2002). Quality assessment of strawberries packed with perforated polypropylene punnets during cold storage. Food Science and Technology International, 8(2), 65–71.

    Article  Google Scholar 

  • Shamaila, M., Baumann, T. E., Eaton, G. W., Powrie, W. D., & Skura, B. J. (1992). Quality attributes of strawberry cultivars grown in British Columbia. Journal of Food Science, 57(3), 696–699.

    Article  CAS  Google Scholar 

  • Sistrunk, W. A., & Morris, J. A. (1985). Strawberry quality: Influence of cultural and environmental factors. In H. E. Pattee (Ed.), Evaluation of quality of fruits and vegetables (pp. 217–256). Westport: AVI Publishing Company.

    Google Scholar 

  • Smith, R. B., Skog, L. J., & Dale, A. (2003). Strawberries. In B. Caballero, L. Trugo, & P. Finglas (Eds.), Encyclopedia of food sciences and nutrition (pp. 5624–5628). London: Elsevier.

    Chapter  Google Scholar 

  • Sogvar, O. B., Saba, M. K., & Emamifar, A. (2016). Aloe vera and ascorbic acid coatings maintain postharvest quality and reduce microbial load of strawberry fruit. Postharvest Biology and Technology, 114, 29–35.

    Article  CAS  Google Scholar 

  • Sommer, N. F., Fortlage, R. J., Mitchell, F. G., & Maxie, E. C. (1973). Reduction of postharvest losses of strawberry fruits from gray mold. Journal of the American Society for Horticultural Science, 98, 285–288.

    Google Scholar 

  • Spayd, S. E., & Morris, J. R. (1981). Physical and chemical characteristics of puree from once-over harvested strawberries. Journal of the American Society for Horticultural Science, 106, 101–105.

    Google Scholar 

  • Suppakul, P., Miltz, J., Sonneveld, K., & Bigger, S. W. (2003). Active packaging technologies with an emphasis on antimicrobial packaging and its applications. Journal of Food Science, 68, 408–420.

    Article  CAS  Google Scholar 

  • Tapia, M. S., Rojas-Graü, M. A., Carmona, A., Rodriguez, F. J., Soliva-Fortuny, R., & Martin-Bellose, O. (2008). Use of alginate and gellan-based coatings for improving barrier, texture and nutritional properties of fresh-cut papaya. Food Hydrocolloids, 22, 1493–1503.

    Article  CAS  Google Scholar 

  • Torrieri, E., Perone, N., Cavella, S., & Masi, P. (2010). Modelling the respiration rate of minimally processed broccoli (Brassica rapa var. sylvestris) for modified atmosphere package design. International Journal of Food Science and Technology, 45, 2186–2193.

    Article  CAS  Google Scholar 

  • Trevino-Garza, M. Z., García, S., Flores-Gonzalez, M. S., & Arevalo-Nino, K. (2015). Edible active coatings based on pectin, pullulan, and chitosan increase quality and shelf life of strawberries (Fragaria ananassa). Journal of Food Science, 80(8), M1823–M1830.

    Article  CAS  PubMed  Google Scholar 

  • Tulipani, S., Romandini, S., Busco, F., Bompadre, S., Mezzetti, B., & Battino, M. (2009). Ascorbate, not urate, modulates the plasma antioxidant capacity after strawberry intake. Food Chemistry, 117, 181–188.

    Article  CAS  Google Scholar 

  • Vachon, C., D’Aprano, G., Lacroix, M., & Letendre, M. (2003). Effect of edible coating process and irradiation treatment of strawberry Fragaria spp. on storage-keeping quality. Journal of Food Science, 68, 608–611.

    Article  CAS  Google Scholar 

  • Vargas, M., Albors, A., Chiralt, A., & González-Martinez, C. (2006). Quality of cold-stored strawberries as affected by chitosan–oleic acid edible coating. Postharvest Biology and Technology, 41, 164–171.

    Article  CAS  Google Scholar 

  • Velde, F. V. D., Tarola, A. M., Güemes, D., & Pirovani, M. E. (2013). Bioactive compounds and antioxidant capacity of Camarosa and Selva strawberries (Fragaria x ananassa Duch.) Foods, 2(2), 120–131.

    Article  CAS  Google Scholar 

  • Velickova, E., Winkelhausen, E., Kuzmanova, S., Alves, V. D., & Moldão-Martins, M. (2013). Impact of chitosan-beeswax edible coatings on the quality of fresh strawberries (Fragaria ananassa cv Camarosa) under commercial storage conditions. LWT-Food Science and Technology, 52, 80–92.

    Article  CAS  Google Scholar 

  • Vu, K. D., Hollingsworth, R. G., Leroux, E., Salmieri, S., & Lacroix, M. (2011). Development of edible bioactive coating based on modified chitosan for increasing the shelf life of strawberries. Food Research International, 44(1), 198–203.

    Article  CAS  Google Scholar 

  • Wedge, D. E., Smith, B. J., Quebedeaux, J. P., & Constantin, R. J. (2007). Fungicide management strategies for control of strawberry fruit rot diseases in Louisiana and Mississippi. Crop Protection, 26(9), 1449–1458.

    Article  CAS  Google Scholar 

  • Yang, F. M., Li, H. M., Li, F., Xin, Z. H., Zhao, L. Y., Zheng, Y. H., & Hu, Q. H. (2010). Effect of nano-packing on preservation quality of fresh strawberry (Fragaria ananassa Duch. cv Fengxiang) during storage at 4°C. Journal of Food Science, 75(3), 236–240.

    Article  CAS  Google Scholar 

  • Zhang, H., Zheng, X., Wang, L., Li, S., & Liu, R. (2007). Effect of yeast antagonist in combination with hot water dips on postharvest Rhizopus rot of strawberries. Journal of Food Engineering, 78, 281–287.

    Article  CAS  Google Scholar 

  • Zhang, H., Ma, L., Song Jiang, S., Lin, H., Zhang, X., Ge, L., & Xu, Z. (2010). Enhancement of biocontrol efficacy of Rhodotorula glutinis by salicyclic acid against gray mold spoilage of strawberries. International Journal of Food Microbiology, 141, 122–125.

    Article  CAS  PubMed  Google Scholar 

  • Zheng, Y., Zhenfeng, Y., & Xuehong, C. (2008). Effect of high oxygen atmospheres on fruit decay and quality in Chinese bayberries, strawberries and blueberries. Food Control, 19, 470–474.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Parvez, S., Wani, I.A. (2018). Postharvest Biology and Technology of Strawberry. In: Mir, S., Shah, M., Mir, M. (eds) Postharvest Biology and Technology of Temperate Fruits. Springer, Cham. https://doi.org/10.1007/978-3-319-76843-4_14

Download citation

Publish with us

Policies and ethics