Skip to main content

Postharvest Biology and Technology of Kiwifruit

  • Chapter
  • First Online:
Postharvest Biology and Technology of Temperate Fruits

Abstract

Kiwifruit is one of the most recently domesticated temperate fruit crops. The consumption of fresh kiwifruits is booming due to its numerous health benefits. The postharvest physiology of kiwifruit is rather complex and is very sensitive to exogenous ethylene. The lack of proper maturity harvest indices is a major drawback in postharvest management, except for the soluble solids content (SSC), which is widely used as a harvest index. Many pre- and postharvest factors are involved in the deterioration of fresh fruit quality and storage life. Therefore, the development of novel techniques to maintain the quality and shelf life of fruits after harvesting is a major challenge. Recent postharvest and storage techniques like the use of ethylene scrubber and blockers, surface coatings, postharvest fungicides, heat treatments, ionizing radiation, and the use of bioagents, controlled atmosphere (CA) storage, and modified atmosphere packaging (MAP), along with cold chain management, are helping to address the call for preserving quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe, K., & Watada, A. E. (1991). Ethylene absorbent to maintain quality of lightly processed fruits and vegetables. Journal of Food Science, 56(6), 1589–1592.

    Article  CAS  Google Scholar 

  • Abeles, F. B., Morgan, M. P., & Saltveit, M. E., Jr. (1992). Ethylene in plant biology (p. 414). San Diego: Academic.

    Google Scholar 

  • Acican, T., Alibaş, K., & Özelkök, I. S. (2007). Mechanical damage to apples during transport in wooden crates. Biosystems Engineering, 96(2), 239–248.

    Article  Google Scholar 

  • Ahmadi, E. (2012). Bruise susceptibilities of kiwifruit as affected by impact and fruit properties. Research in Agricultural Engineering, 58(3), 107–113.

    Article  Google Scholar 

  • Antunes, M. D. C. (2007). The role of ethylene in kiwifruit ripening and senescence. Stewart Postharvest Review, 3(2), 1–8.

    Article  Google Scholar 

  • Antunes, M. D. C., & Sfakiotakis, E. M. (1995). The effect of controlled atmosphere and ultra low oxygen on storage ability and quality of ‘Hayward’ kiwifruit. In III International Symposium on Kiwifruit (Vol. 444, pp. 613–618).

    Google Scholar 

  • Antunes, M. D., & Sfakiotakis, E. M. (2002). Chilling induced ethylene biosynthesis in ‘Hayward’ kiwifruit following storage. Scientia Horticulturae, 92(1), 29–39.

    Article  CAS  Google Scholar 

  • Antunes, M. D. C., & Sfakiotakis, E. M. (2008). Changes in fatty acid composition and electrolyte leakage of ‘Hayward’ kiwifruit during storage at different temperatures. Food Chemistry, 110(4), 891–896.

    Article  PubMed  CAS  Google Scholar 

  • Antunes, M. D. C., Pateraki, I., Kanellis, A. K., & Sfakiotakis, E. M. (2000). Differential effects of low-temperature inhibition on the propylene induced autocatalysis of ethylene production, respiration and ripening of ‘Hayward’ kiwifruit. The Journal of Horticultural Science and Biotechnology, 75(5), 575–580.

    Article  CAS  Google Scholar 

  • Antunes, M. D. C., Neves, N., Curado, F., Rodrigues, S., & Panagopoulos, T. (2005). The effect of pre and postharvest calcium applications on ‘Hayward’ kiwifruit storage ability. Acta Horticulturae, 682(2), 909–916.

    Article  CAS  Google Scholar 

  • Arpaia, M. L., Mitchell, F. G., Kader, A. A., & Mayer, G. (1986). Ethylene and temperature effects on softening and white core inclusions of kiwifruit stored in air or controlled atmospheres. Journal of the American Society for Horticultural Science, 111(1), 149–153.

    CAS  Google Scholar 

  • Arpaia, M. L., Labavitch, J. M., Greve, C., & Kader, A. A. (1987). Changes in the cell wall components of kiwifruit during storage in air or controlled atmosphere. Journal of the American Society for Horticultural Science, 112(3), 474–481.

    CAS  Google Scholar 

  • Asiche, W. O., Mitalo, O. W., Kasahara, Y., Tosa, Y., Mworia, E. G., Ushijima, K., Nakano, R., & Kubo, Y. (2017). Effect of storage temperature on fruit ripening in three kiwifruit cultivars. The Horticulture Journal, OKD-028.

    Google Scholar 

  • Atkinson, R. G., & MacRae, E. A. (2007). Kiwifruits: Biotechnology in agriculture and forestry. In E. C. Pua & M. R. Davey (Eds.), Transgenic crops V (Vol. 60, pp. 329–346).

    Google Scholar 

  • Atkinson, R. G., Gunaseelan, K., Wang, M. Y., Luo, L., Wang, T., Norling, C. L., Johnston, S. L., Maddumage, R., Schröder, R., & Schaffer, R. J. (2011). Dissecting the role of climacteric ethylene in kiwifruit (Actinidia chinensis) ripening using a 1-aminocyclopropane-1-carboxylic acid oxidase knockdown line. Journal of Experimental Botany, 62(11), 3821–3835.

    Article  PubMed  CAS  Google Scholar 

  • Bal, E., & Celik, S. (2010). The effects of postharvest treatments of salicylic acid and potassium permanganate on the storage of kiwifruit. Bulgarian Journal of Agriculture Sciences, 16(2), 576–584.

    Google Scholar 

  • Barboni, T., Cannac, M., & Chiaramonti, N. (2010). Effect of cold storage and ozone treatment on physicochemical parameters, soluble sugars and organic acids in Actinidia deliciosa. Food Chemistry, 121, 946–951.

    Article  CAS  Google Scholar 

  • Bauchot, A. D., Hallett, I. C., Redgwell, R. J., & Lallu, N. (1999). Cell wall properties of kiwifruit affected by low temperature breakdown. Postharvest Biology and Technology, 16(3), 245–255.

    Article  CAS  Google Scholar 

  • Bautista-Baños, S., Long, P. G., & Ganesh, S. (1997). Curing of kiwifruit for control of postharvest infection by Botrytis cinerea. Postharvest Biology and Technology, 12(2), 137–145.

    Article  Google Scholar 

  • Beever, D. J., & Hopkirk, G. (1990). Fruit development and fruit physiology. In I. J. Warrington & G. C. Wetson (Eds.), Kiwifruit: Science and management (pp. 97–126). Auckland: Ryan Richards Publisher.

    Google Scholar 

  • Ben-Arie, R., Gross, J., & Sonego, L. (1982). Changes in ripening-parameters and pigments of the Chinese gooseberry (kiwi) during ripening and storage. Scientia Horticulturae, 18(1), 65–70.

    Article  Google Scholar 

  • Benítez, S., Achaerandio, I., Pujolà, M., & Sepulcre, F. (2015). Aloe vera as an alternative to traditional edible coatings used in fresh-cut fruits: A case of study with kiwifruit slices. LWT-Food Science and Technology, 61(1), 184–193.

    Article  CAS  Google Scholar 

  • Beutel, J. A., Winter, F. H., Manners, S. C., & Miller, M. W. (1976). A new crop for California: Kiwifruit. California Agriculture, 30(10), 5–7.

    CAS  Google Scholar 

  • Biggs, A. R. (1999). Effects of calcium salts on apple bitter rot caused by two Colletotrichum spp. Plant Disease, 83(11), 1001–1005.

    Article  CAS  Google Scholar 

  • Boquete, E. J., Trinchero, G. D., Fraschina, A. A., Vilella, F., & Sozzi, G. O. (2004). Ripening of ‘Hayward’ kiwifruit treated with 1-methylcyclopropene after cold storage. Postharvest Biology and Technology, 32(1), 57–65.

    Article  CAS  Google Scholar 

  • Brackett, R. E. (1994). Microbiological spoilage and pathogens in minimally processed refrigerated fruits and vegetables. In Minimally processed refrigerated fruits and vegetables (pp.269–312). Springer.

    Google Scholar 

  • Burdon, J. (2015). Soluble solids revisited: A maturity or harvest index for kiwifruit. Proc. XIII IS on Kiwifruit. Acta Horticulturae, 1096, 257–266.

    Article  Google Scholar 

  • Burdon, J., & Clark, C. (2001). Effect of postharvest water loss on ‘Hayward’ kiwifruit water status. Postharvest Biology and Technology, 22(3), 215–225.

    Article  Google Scholar 

  • Burdon, J., & Lallu, N. (2011). Kiwifruit (Actinidia spp.). Cambridge: Woodhead Publishing.

    Book  Google Scholar 

  • Burdon, J., McLeod, D., Lallu, N., Gamble, J., Petley, M., & Gunson, A. (2004). Consumer evaluation of “Hayward” kiwifruit of different at-harvest dry matter contents. Postharvest Biology and Technology, 34(3), 245–255.

    Article  Google Scholar 

  • Burg, S. P. (1968). Ethylene, plant senescence and abscission. Plant Physiology, 43(9 Pt B), 1503.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chattopadhayay, T. K. (2008). A textbook on pomology (Vol. IV). Ludhiana: Kalyani Publishers.

    Google Scholar 

  • Chiaramonti, N., & Barboni, T. (2010). Relationship between the physicochemical parameters and the ethylene emission during cold storage of kiwifruits. International Journal of Food Science & Technology, 45(7), 1513–1516.

    Article  CAS  Google Scholar 

  • Cook, D. W. M., Long, P. G., & Ganesh, S. (1999). The combined effect of delayed application of yeast biocontrol agents and fruit curing for the inhibition of the postharvest pathogen Botrytis cinerea in kiwifruit. Postharvest Biology and Technology, 16, 233–243.

    Article  Google Scholar 

  • Costa, G., & Ferguson, A. R. (2013, November). Bacterial canker of kiwifruit: Response to a threat. In I International Symposium on Bacterial Canker of Kiwifruit (Vol. 1095, pp. 27–40).

    Google Scholar 

  • Crisosto, C. H., & Kader, A. A. (1999). Kiwifruit postharvest quality maintenance guidelines. Davis: Department of Pomology, University of California.

    Google Scholar 

  • Crisosto, C. H., Mitcham, E. J., & Kader, A. A. (1999). Kiwifruit. Fresh Produce Facts, University of California. Retrieved from http://postharvest.ucdavis.edu/Commodity_Resources/Fact_Sheets/Datastores/Fruit_English/?uid=30&ds=798

  • Crisosto, C. H., Mitcham, E. J., & Kader, A. A. (2000). Produce facts kiwi fruit. Management of fruit ripening. Postharvest Horticulture Research, 9, 40–41.

    Google Scholar 

  • Crisosto, C. H., Hasey, J., Cantin, C., Garibay, S., & Crisosto, G. M. (2008). New kiwifruit dry weight protocol. Cooperative Extension. University of California. Central Valley Postharvest Newsletter, 17, 11–15.

    Google Scholar 

  • Cruz-Castillo, J. G., Woolley, D. J., & Lawes, G. S. (2002). Kiwifruit size and CPPU response are influenced by the time of anthesis. Scientia Horticulturae, 95(1), 23–30.

    Article  CAS  Google Scholar 

  • Diab, T., Biliaderis, C. G., Gerasopoulos, D., & Sfakiotakis, E. (2001). Physicochemical properties and application of pullulan edible films and coatings in fruit preservation. Journal of the Science of Food and Agriculture, 81(10), 988–1000.

    Article  CAS  Google Scholar 

  • Drummond, L. (2013). The composition and nutritional value of kiwifruit. Advances in Food and Nutrition Research, 68, 33–57.

    Article  PubMed  Google Scholar 

  • Du, J., Gemma, H., & Iwahori, S. (1997). Effect of chitosan coating on the storage of peach, Japanese pear, and kiwifruit. Journal of the Japanese Society for Horticultural Science, 66, 15–22.

    Article  CAS  Google Scholar 

  • FAOSTAT. 2014. Food and Agriculture Organization of the United Nations. http://faostat.fao.org.

  • Faivre-Rampant, O., Charpentier, J. P., Kevers, C., Dommes, J., Van Onckelen, H., Jay-Allemand, C., & Gaspar, T. (2002). Cuttings of the non-rooting rac tobacco mutant overaccumulate phenolic compounds. Functional Plant Biology, 29(1), 63–71.

    Article  CAS  Google Scholar 

  • Fanglun, J. I. N., Zhang, F., Xuan, Y. U. E., Ming, L. I., & Xuexi, A. O. (2016). Correlation between leaf size and fruit quality of kiwi. Agricultural Science & Technology, 17(11), 2469–2472.

    Google Scholar 

  • Fattahi, J., Fifall, R., & Babri, M. (2010). Postharvest quality of kiwifruit (Actinidia deliciosa cv. Hayward) affected by pre-storage application of salicylic acid. South Western Journal of Horticulture, Biology and Environment, 1, 175–186.

    Google Scholar 

  • Feng, J., MacKay, B. R., Maguire, K. M., Benge, J. R. & Jeffery, P. B. (2002). Suggestions on rationalized methodologies to investigate kiwifruit storage life. In XXVI International Horticultural Congress: Issues and Advances in Postharvest Horticulture, 628, 591–598.

    Google Scholar 

  • Ferguson, A. R. (1984). Kiwifruit: A botanical review. Horticultural Reviews, 6, 1–64.

    Google Scholar 

  • Ferguson, I. B., & Boyd, L. M. (2002). Inorganic nutrients and fruit quality. In M. Knee (Ed.), Fruit quality and its biological basis (pp. 15–45). Sheffield: Sheffield Academic Press.

    Google Scholar 

  • Ferguson, A. R., & Huang, H. W. (2007). Genetic resources of kiwifruit: Domestication and breeding. Horticultural Reviews, 33, 1–121.

    CAS  Google Scholar 

  • Fisk, C. L. (2006). Investigation of postharvest quality and storability of hardy kiwifruit (Actinidia arguta ‘Ananasnaya’). A thesis submitted to Oregon State University.

    Google Scholar 

  • Fisk, C. L., Silver, A. M., Strik, B. C., & Zhao, Y. (2008). Postharvest quality of hardy kiwifruit (Actinidia arguta ‘Ananasnaya’) associated with packaging and storage conditions. Postharvest Biology and Technology, 47(3), 338–345.

    Article  CAS  Google Scholar 

  • Fonseca, S. C., Oliveira, F. A., & Brecht, J. K. (2002). Modelling respiration rate of fresh fruits and vegetables for modified atmosphere packages: A review. Journal of Food Engineering, 52(2), 99–119.

    Article  Google Scholar 

  • Gallego, P. P., & Zarra, I. (1997). Changes in cell wall composition and water-soluble polysaccharides during kiwifruit development. Annals of Botany, 79(6), 695–701.

    Article  CAS  Google Scholar 

  • Gerasopoulos, D., & Drogoudi, P. D. (2005). Summer-pruning and preharvest calcium chloride sprays affect storability and low temperature breakdown incidence in kiwifruit. Postharvest Biology and Technology, 36, 303–308.

    Article  CAS  Google Scholar 

  • Gerasopoulos, D., Chlioumis, G., & Sfakiotakis, E. (2006). Non-freezing points below zero induce low temperature breakdown of kiwifruit at harvest. Journal of the Science of Food and Agriculture, 86(6), 886–890.

    Article  CAS  Google Scholar 

  • Ghani, M. A. A., Awang, Y., & Sijam, K. (2011). Disease occurrence and fruit quality of pre-harvest calcium treated red flesh dragon fruit (Hylocereus polyrhizus). African Journal of Biotechnology, 10(9), 1550–1558.

    Google Scholar 

  • Gil, M. I., Aguayo, E., & Kader, A. A. (2006). Quality changes and nutrient retention in fresh-cut versus whole fruits during storage. Journal of Agricultural and Food Chemistry, 54(12), 4284–4296.

    Article  PubMed  CAS  Google Scholar 

  • Guo, X-M., Xiao, X., Wang G-X., & Gao, R. F. (2013). Vascular anatomy of kiwifruit and its implication for the origin of carpels. Frontiers in Plant Science, 4, 391.

    Google Scholar 

  • Hall, A. J., Richardson, A. C., & Snelgar, W. P. (2004, June). Modelling fruit development in ‘Hayward’ kiwifruit. In VII International Symposium on Modelling in Fruit Research and Orchard Management (Vol. 707, pp. 41–47).

    Google Scholar 

  • Hall, A. J., Minchin, P. E., Clearwater, M. J., & Génard, M. (2013). A biophysical model of kiwifruit (Actinidia deliciosa) berry development. Journal of Experimental Botany, 64(18), 5473–5483. https://doi.org/10.1093/jxb/ert317.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hassall, A. K., Pringle, G. J., & MacRae, E. A. (1998). Development, maturation, and postharvest responses of Actinidia arguta (Sieb. et Zucc.) Planch, ex Miq. fruit. New Zealand Journal of Crop and Horticultural Science, 26(2), 95–108.

    Article  Google Scholar 

  • Heatherbell, D. A. (1975). Identification and quantitative analysis of sugars and non-volatile organic acids in Chinese gooseberry fruit (Actinidia chinensis planch.) Journal of the Science of Food and Agriculture, 26(6), 815–820.

    Article  PubMed  CAS  Google Scholar 

  • Hewett, E. W., Kim, H. O., & Lallu, N. (1999, January). Postharvest physiology of kiwifruit: The challenges ahead. In IV International Symposium on Kiwifruit (Vol. 498, pp. 203–216).

    Google Scholar 

  • Hopping, M. E. (1976). Structure and development of fruit & seeds in Chinese gooesberry (Actinidia chinensis Planch.). Newzeeland Journal of Botany, 14, 63–68.

    Google Scholar 

  • Huang, S., Ding, J., Deng, D., Tang, W., Sun, H., Liu, D., Zhang, L., Niu, X., Zhang, X., Meng, M., & Yu, J. (2013). Draft genome of the kiwifruit Actinidia chinensis. Nature Communications, 4, 2640.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hyodo, H., & Fukasawa, R. (1985). Ethylene production in kiwifruit. Journal of the Japanese Society for Horticultural Science, 54(2), 209–215.

    Article  CAS  Google Scholar 

  • Iwasawa, H., Morita, E., Yui, S., & Yamazaki, M. (2011). Anti-oxidant effects of kiwi fruit in vitro and in vivo. Biological and Pharmaceutical Bulletin, 34(1), 128–134.

    Article  PubMed  CAS  Google Scholar 

  • Jhalegar, M. J., Sharma, R. R., Pal, R. K., & Rana, V. (2012). Effect of postharvest treatments with polyamines on physiological and biochemical attributes of kiwifruit (Actinidia deliciosa) cv. Allison. Fruits, 67(1), 13–22.

    Article  CAS  Google Scholar 

  • Johnson, R. S., Mitchell, F. G., Crisosto, C. H., Olson W. H., & Costa, G. (1997). Nitrogen influences kiwifruit storage life. In: Proceedings of the Third International. Symposium on Kiwifruit. E.Stakiotakis & J. Porlingis (Eds.), Acta Horticulturae (Vol. 444, pp. 285–289). ISHS.

    Google Scholar 

  • Jordan, R. B., & Seelye, R. J. (2009). Relationship between taste perception, density and soluble solids concentration in kiwifruit (Actinidia deliciosa). New Zealand Journal of Crop and Horticultural Science, 37, 303–317.

    Article  Google Scholar 

  • Jordan, R. B., Walton, E. F., Klages, K. U., & Seelye, R. J. (2000). Postharvest fruit density as an indicator of dry matter and ripened soluble solids of kiwifruit. Postharvest Biology and Technology, 20(2), 163–173.

    Article  Google Scholar 

  • Kader, A. A. (1985). Ethylene-induced senescence and physiological disorders in harvested horticultural crops. HortScience, 20(1), 54–57.

    CAS  Google Scholar 

  • Kader, A. A. (2002a). Postharvest biology and technology: An overview. In A. A. Kader (Ed.), Postharvest technology of horticultural crops (3rd ed.). Oakland: University of California, Division of Agriculture and Natural Resources, Publication.

    Google Scholar 

  • Kader, A. A. (Ed.). (2002b). Postharvest technology of horticultural crops (3rd ed.).University of California, Agriculture and Natural Resources, Oakland, Publication 3311.

    Google Scholar 

  • Kalt, W. (2005). Effects of production and processing factors on major fruit and vegetable antioxidants. Journal of Food Science, 70(1), R11–R19.

    Article  CAS  Google Scholar 

  • Kays, S. J. (1999). Preharvest factors affecting appearance. Postharvest Biology and Technology, 15(3), 233–247.

    Article  Google Scholar 

  • Koukounaras, A., & Sfakiotakis, E. (2007). Effect of 1-MCP prestorage treatment on ethylene and CO2 production and quality of ‘Hayward’ kiwifruit during shelf-life after short, medium and long term cold storage. Postharvest Biology and Technology, 46(2), 174–180.

    Article  CAS  Google Scholar 

  • Kusano, T., Yamaguchi, K., Berberich, T., & Takahashi, Y. (2007). Advances in polyamine research in 2007. Journal of Plant Research, 120(3), 345–350.

    Article  PubMed  CAS  Google Scholar 

  • Lai, R., Woolley, D. J., & Lawes, G. S. (1989). Effect of leaf to fruit ratio on fruit growth of kiwifruit (Actinidia deliciosa). Scientia Horticulturae, 39(3), 247–255.

    Article  Google Scholar 

  • Lallu, N., Searle, A. N., & Macrae, E. A. (1989). An investigation of ripening and handling strategies for early season kiwifruit (Actinidia deliciosa cv Hayward). Journal of the Science of Food and Agriculture, 47(4), 387–400.

    Article  Google Scholar 

  • Lallu, N., Burdon, J., Yearsley, C. W., & Billing, D. (2003). Commercial practices used for controlled atmosphere storage of ‘Hayward’ kiwifruit. Acta Horticulturae, 610, 245–251.

    Article  Google Scholar 

  • Lee, S. K., & Kader, A. A. (2000). Preharvest and postharvest factors influencing vitamin C content of horticultural crops. Postharvest Biology and Technology, 20(3), 207–220.

    Article  CAS  Google Scholar 

  • Lee, J. G., Lee, D. H., Park, S. Y., Hur, J. S., & Koh, Y. J. (2001). First report of Diaporthe actinidiae, the causal organism of stem-end rots of kiwifruit in Korea. The Plant Pathology Journal, 17(2), 110–113.

    Article  Google Scholar 

  • Lewis, D. H., Burge, G. K., Hopping, M. E., & Jameson, P. E. (1996). Cytokinins and fruit development in the kiwifruit (Actinidia deliciosa). II. Effects of reduced pollination and CPPU application. Physiologia Plantarum, 98(1), 187–195.

    Article  CAS  Google Scholar 

  • Li, H., Suo, J., Han, Y., Liang, C., Jin, M., Zhang, Z., & Rao, J. (2017). The effect of 1-methylcyclopropene, methyl jasmonate and methyl salicylate on lignin accumulation and gene expression in postharvest ‘Xuxiang’ kiwifruit during cold storage. Postharvest Biology and Technology, 124, 107–118.

    Article  CAS  Google Scholar 

  • Lim, S., Han, S. H., Kim, J., Lee, H. J., Lee, J. G., & Lee, E. J. (2016). Inhibition of hardy kiwifruit (Actinidia aruguta) ripening by 1-methylcyclopropene during cold storage and anticancer properties of the fruit extract. Food Chemistry, 190, 150–157.

    Article  PubMed  CAS  Google Scholar 

  • Litz, R. E. (Ed.). (2005). Biotechnology of fruit and nut crops (Vol. 29). CABI.

    Google Scholar 

  • Lorenzo, E. R., Lastra, B., Otero, V., & Gallego, P. P. (2006, February). Effects of three plant growth regulators on kiwifruit development. In VI International Symposium on Kiwifruit (Vol. 753, pp. 549–554).

    Google Scholar 

  • Ma, Q., Suo, J., Huber, D. J., Dong, X., Han, Y., Zhang, Z., & Rao, J. (2014). Effect of hot water treatments on chilling injury and expression of a new C-repeat binding factor (CBF) in ‘Hongyang’ kiwifruit during low temperature storage. Postharvest Biology and Technology, 97, 102–110.

    Article  CAS  Google Scholar 

  • MacRae, E. A., Lallu, N., Searle, A. N., & Bowen, J. H. (1989). Changes in the softening and composition of kiwifruit (Actinidia deliciosa) affected by maturity at harvest and postharvest treatments. Journal of the Science of Food and Agriculture, 49(4), 413–430.

    Article  CAS  Google Scholar 

  • Manolopoulou, H., & Papadopoulou, P. (1998). A study of respiratory and physico-chemical changes of four kiwi fruit cultivars during cool-storage. Food Chemistry, 63(4), 529–534.

    Article  CAS  Google Scholar 

  • Marangoni, A. G., Palma, T., & Stanley, D. W. (1996). Membrane effects in postharvest physiology. Postharvest Biology and Technology, 7(3), 193–217.

    Article  Google Scholar 

  • Marsh, K., Attanayake, S., Walker, S., Gunson, A., Boldingh, H., & MacRae, E. (2004). Acidity and taste in kiwifruit. Postharvest Biology and Technology, 32(2), 159–168.

    Article  Google Scholar 

  • Martínez-Romero, D., Bailén, G., Serrano, M., Guillén, F., Valverde, J. M., Zapata, P., Castillo, S., & Valero, D. (2007). Tools to maintain postharvest fruit and vegetable quality through the inhibition of ethylene action: A review. Critical Reviews in Food Science and Nutrition, 47(6), 543–560.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto, S., Obara, T., & Luh, B. S. (1983). Changes in chemical constituents of kiwifruit during postharvest ripening. Journal of Food Science, 48(2), 607–611.

    Article  CAS  Google Scholar 

  • McDonald, B., & Harman, J. E. (1982). Controlled-atmosphere storage of kiwifruit. I. Effect on fruit firmness and storage life. Scientia Horticulturae, 17(2), 113–123.

    Article  Google Scholar 

  • McGlone, V. A., & Kawano, S. (1998). Firmness, dry-matter and soluble-solids assessment of postharvest kiwifruit by NIR spectroscopy. Postharvest Biology and Technology, 13(2), 131–141.

    Article  Google Scholar 

  • Minas, I. S., Vicente, A. R., Dhanapal, A. P., Manganaris, G. A., Goulas, V., Vasilakakis, M., Crisosto, C. H., & Molassiotis, A. (2014). Ozone-induced kiwifruit ripening delay is mediated by ethylene biosynthesis inhibition and cell wall dismantling regulation. Plant Science, 229, 76–85.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, F. G. (1990). Postharvest physiology and technology of kiwifruit. Acta Horticulturae, 282, 291–307.

    Article  Google Scholar 

  • Mitchell, F. G., Mayer, G., & Sommer, N. F. (1979). Storage practices to control flesh softening of kiwifruits (p. 18). Davis: Department of Pomology. Progress Report to Kiwi Growers of California, University of California.

    Google Scholar 

  • Montanaro, G., Dichio, B., Xiloyannis, C., & Celano, G. (2006). Light influences transpiration and calcium accumulation in fruit of kiwifruit plants (Actinidia deliciosa var. deliciosa). Plant Science, 170(3), 520–527.

    Article  CAS  Google Scholar 

  • Nardozza, S., Kashuba, P., McCaughan, L., Philippe, M., Wohlers, M., Montefiori, M., Currie, M., & Richardson, A. (2015). Leaves are important to obtain consistent red flesh pigmentation in Actinidia chinensis fruit. Scientia Horticulturae, 197, 496–503.

    Article  Google Scholar 

  • Nishiyama, I., Yamashita, Y., Yamanaka, M., Shimohashi, A., Fukuda, T., & Oota, T. (2004). Varietal difference in vitamin C content in the fruit of kiwifruit and other Actinidia species. Journal of Agricultural and Food Chemistry, 52(17), 5472–5475.

    Article  PubMed  CAS  Google Scholar 

  • NZPA [New Zealand Press Association]. (2007). High fruit losses hit kiwifruit packager’s profits. Retrieved from http://www.nzherald.co.nz/business/news/article.cfm?c_id=3&objectid=10433666

  • O’Connor-Shaw, R. E., Roberts, R., Ford, A. L., & Nottingham, S. M. (1994). Shelf life of minimally processed honeydew, kiwifruit, papaya, pineapple and cantaloupe. Journal of Food Science, 59(6), 1202–1206.

    Article  Google Scholar 

  • OECD. (1992). International standardisation of fruit and vegetables. Kiwifruit. Paris: OECD Publications Service.

    Google Scholar 

  • Ohara, H., Izawa, J., Kimura, S., Hiroi, N., Matsui, H., Hirata, N., & Takahashi, E. (1997). Induction of fruit set and growth of parthenocarpic ‘Hayward’ kiwifruit with plant growth regulators. Journal of the Japanese Society for Horticultural Science, 66, 467–473.

    Article  CAS  Google Scholar 

  • Park, Y. S. (1996). The shelf life of kiwifruits in room temperature and cold storage following controlled atmosphere storage. Journal of the Korean Society for Horticultural Science, 37(1), 58–63.

    Google Scholar 

  • Park, Y. S., & Kim, B. W. (1995). Changes in fruit firmness, fruit composition, respiration and ethylene production of kiwifruit during storage. Journal of the Korean Society for Horticultural Science, 36(1), 67–73.

    CAS  Google Scholar 

  • Park, Y. S., & Kim, S. R. (2002). Effects of prestorage conditioning and hot water dip on fruit quality of non-astringent ‘Fuyu’ persimmons during cold storage. Journal of the Korean Society for Horticultural Science, 43(1), 58–63.

    CAS  Google Scholar 

  • Patterson, K. J., Snelgar, W. P., Richardson, A. C., & McPherson, H. G. (1999, January). Flower quality and fruit size of Hayward kiwifruit. In IV International Symposium on Kiwifruit (Vol. 498, pp. 143–150).

    Google Scholar 

  • Patterson, K., Burdon, J., & Lallu, N. (2003). ‘Hort16A’ kiwifruit: Progress and issues with commercialization. Acta Horticulturae, 610, 267–273.

    Article  Google Scholar 

  • Paull, R. E., & Duarte, O. (2011). Tropical fruits (Vol. 1). CABI.

    Google Scholar 

  • Perera, C. O., & Hallett, I. C. (1991). Characteristics of the irritant (catch) factor in processed kiwifruit. In II International Symposium on Kiwifruit (Vol. 297, pp. 675–680).

    Google Scholar 

  • Petkou, I. T., Pritsa, T. S., & Sfakiotakis, E. M. (2004). Effects of polyamines on ethylene production, respiration and ripening of kiwifruit. The Journal of Horticultural Science and Biotechnology, 79(6), 977–980.

    Article  CAS  Google Scholar 

  • Possingham, J. V., Coote, M., & Hawker, J. S. (1980). The plastids and pigments of fresh and dried Chinese gooseberries (Actinidia chinensis). Annals of Botany, 45(5), 529–533.

    Article  CAS  Google Scholar 

  • Pratt, H. K., & Reid, M. S. (1974). Chinese gooseberry: Seasonal patterns in fruit growth and maturation, ripening, respiration and the role of ethylene. Journal of the Science of Food and Agriculture, 25(7), 747–757.

    Article  CAS  Google Scholar 

  • Pyke, N. B., & Alspach, P. A. (1986). Inter-relationships of fruit weight, seed number and seed weight in Kiwifruit. New Zealand. Horticultural Science, 20, 153–156.

    Google Scholar 

  • Pyke, N. B., Manktelow, D. G., Elmer, P. A. G., & Tate, K. G. (1994). Postharvest dipping of kiwifruit in iprodione to control stem-end rot caused by Botrytis cinerea. New Zealand Journal of Crop and Horticultural Science, 22(1), 81–86.

    Article  Google Scholar 

  • Qian, Y. Q., & Yu, D. P. (1992). Advances in Actinidia research in China. Acta Horticulturae, 297, 51–55.

    Article  Google Scholar 

  • Ramina, A., Tonutti, P., McGlasson, B., Layne, D. R., & Bassi, D. (2008). Ripening, nutrition and postharvest physiology. The peach: Botany, production and uses 550-574. In D. R. Layne & B. D. Bassi (Eds.) CAB International Oxforshire, UK.

    Google Scholar 

  • Redgwell, R. J., & Fry, S. C. (1993). Xyloglucan endotransglycosylase activity increases during kiwifruit (Actinidia deliciosa) ripening (implications for fruit softening). Plant Physiology, 103(4), 1399–1406.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Richardson, A. C., McAneney, K. J., & Dawson, T. E. (1997). Carbohydrate dynamics in kiwifruit. Journal of Horticultural Science, 72(6), 907–917.

    Article  Google Scholar 

  • Robson, P. R., Donnison, I. S., Wang, K., Frame, B., Pegg, S. E., Thomas, A., & Thomas, H. (2004). Leaf senescence is delayed in maize expressing the Agrobacterium IPT gene under the control of a novel maize senescence-enhanced promoter. Plant Biotechnology Journal, 2(2), 101–112.

    Article  PubMed  CAS  Google Scholar 

  • Schotsmans, W. C., Prange, R. K., & Binder, B. M. (2009). 1-Methylcyclopropene: Mode of action and relevance in postharvest horticulture research. Horticultural Reviews, 35, 263–313.

    Google Scholar 

  • Scienza, A., Visai, C., Conca, E., & Valenti, L. (1983). Relazione tra lo sviluppo, la maturazione del frutto e la presenza di ormoni endogeni in Actinidia chinensis. In Atti del II Incontro Frutticolo SOI sull’Actinidia, Udine, 1983, Udine, Italy, Centro Regionale per la Sperimentazione Agraria per il Friuli-Venezia Giulia e Sezione Frutticoltura della SOI (pp. 401–421).

    Google Scholar 

  • Sfakiotakis, E., Antunes, M. D., Stavroulakis, G., Niklis, N., Ververidis, P., & Gerasopoulos, D. (1997). Ethylene biosynthesis and its regulation in ripening “Hayward” kiwifruit. InBiology and biotechnology of the plant hormone ethylene (pp. 47–56). Dordecht: Springer.

    Chapter  Google Scholar 

  • Sfakiotakis, E., Chlioumis, G., & Gerasopoulos, D. (2005). Preharvest chilling reduces low temperature breakdown incidence of kiwifruit. Postharvest Biology and Technology, 38(2), 169–174.

    Article  Google Scholar 

  • Sharma, R. R., Pal, R. K., & Rana, V. (2012). Effect of heat shrinkable films on storability of kiwifruits under ambient conditions. Indian Journal of Horticulture, 69(3), 404–408.

    Google Scholar 

  • Singletary, K. (2012). Kiwifruit: Overview of potential health benefits. Nutrition Today, 47(3), 133–147.

    Article  Google Scholar 

  • Snelgar, W. P., & Thorp, T. G. (1988). Leaf area, final fruit weight and productivity in kiwifruit. Scientia Horticulturae, 36(3–4), 241–249.

    Article  Google Scholar 

  • Solaimani, M., Mostofi, Y., Motallebiazar, A., Fattahi Moghadam, J., & Ghasemnezhad, M. (2009). Effects of MeSA vapor treatment on the postharvest quality of Hayward kiwifruit. In 6th International Postharvest Symposium. Turkey.

    Google Scholar 

  • Sommer, N. F., Fortlage, R. J., & Edwards, D. C. (1983). Minimizing postharvest diseases of kiwifruit. California Agriculture, 37(1–2), 16–18.

    Google Scholar 

  • Souty, M., Reich, M., Breuils, L., Chambroy, Y., Jacquemin, G., & Audergon, J. M. (1993, September). Effects of postharvest calcium treatments on shelf-life and quality of apricot fruit. In X International Symposium on Apricot Culture (Vol. 384, pp. 619–624).

    Google Scholar 

  • Spadaro, D., Galliano, A., Pellegrino, C., Gilardi, G., Garibaldi, A., & Gullino, M. L. (2010). Dry matter, mineral composition, and commercial storage practices influence the development of skin pitting caused by Cadophora luteo-olivacea on kiwifruit ‘Hayward’. Journal of Plant Pathology, 92, 349–356.

    CAS  Google Scholar 

  • Stonehouse, W., Gammon, C. S., Beck, K. L., Conlon, C. A., von Hurst, P. R., & Kruger, R. (2012). Kiwifruit: Our daily prescription for health 1. Canadian Journal of Physiology and Pharmacology, 91(6), 442–447.

    Article  CAS  Google Scholar 

  • Tabatabaekoloor, R., Hashemi, S. J., & Taghizade, G. (2013). Vibration damage to kiwifruits during road transportation. International Journal of Agriculture and Food Science Technology, 4(5), 467–474.

    Google Scholar 

  • Tagliavini, M., Scudellari, D., Marangoni, B., & Toselli, M. (1995). Acid-spray regreening of kiwifruit leaves affected by lime-induced iron chlorosis. In Iron nutrition in soils and plants (pp. 191–195). Dordrecht: Springer.

    Google Scholar 

  • Tang, J., Liu, Y., Li, H., Wang, L., Huang, K., & Chen, Z. (2015). Combining an antagonistic yeast with harpin treatment to control postharvest decay of kiwifruit. Biological Control, 89, 61–67.

    Article  CAS  Google Scholar 

  • Tavarini, S., Degl’Innocenti, E., Remorini, D., Massai, R., & Guidi, L. (2008). Antioxidant capacity, ascorbic acid, total phenols and carotenoids changes during harvest and after storage of Hayward kiwifruit. Food Chemistry, 107(1), 282–288.

    Article  CAS  Google Scholar 

  • Testolin, R., & Ferguson, A. R. (2009). Kiwifruit (Actinidia spp.) production and marketing in Italy. New Zealand Journal of Crop and Horticultural Science, 37(1), 1–32.

    Article  Google Scholar 

  • Tustin, D. S., Cashmore, W. M., & Bensley, R. B. (2001). Pomological and physiological characteristics of Slender Pyramid central leader apple (Malus domestica) planting systems grown on intermediate vigour, semi-dwarfing, and dwarfing rootstocks. New Zealand Journal of Crop and Horticultural Science, 29(3), 195–208.

    Article  Google Scholar 

  • Van Zeebroeck, M., Ramon, H., De Baerdemaeker, J., Nicolaï, B. M., & Tijskens, E. (2007). Impact damage of apples during transport and handling. Postharvest Biology and Technology, 45(2), 157–167.

    Article  Google Scholar 

  • Vergano, P. J., Testin, R. F., & Newall, W. C. (1991). Peach bruising: Susceptibility to impact, vibration, and compression abuse. Transactions of the ASAE, 34(5), 2110–2116.

    Article  Google Scholar 

  • Vissers, M. C., Carr, A. C., Pullar, J. M., & Bozonet, S. M. (2013). The bioavailability of vitamin C from kiwifruit. Advances in Food and Nutrition Research, 68, 125–147.

    Article  PubMed  Google Scholar 

  • Vursavuş, K. K., & Özgüven, F. (2004). Determining the effects of vibration parameters and packaging method on mechanical damage in golden delicious apples. Turkish Journal of Agriculture and Forestry, 28(5), 311–320.

    Google Scholar 

  • Wang, L., Chen, S., Kong, W., Li, S., & Archbold, D. D. (2006). Salicylic acid pretreatment alleviates chilling injury and affects the antioxidant system and heat shock proteins of peaches during cold storage. Postharvest Biology and Technology, 41(3), 244–251.

    Article  CAS  Google Scholar 

  • Watada, A. E., Abe, K., & Yamuchi, N. (1990). Physiological activities of partially processed fruits and vegetables. Food Technology, 44(5), 116–122.

    Google Scholar 

  • Wegrzyn, T. F., & MacRae, E. A. (1992). Pectinesterase, polygalacturonase, and β-galactosidase during softening of ethylene-treated kiwifruit. HortScience, 27(8), 900–902.

    CAS  Google Scholar 

  • Wildman, T., & Luh, B. S. (1981). Effect of sweetener types on quality and composition of canned kiwi nectars. Journal of Food Science, 46(2), 387–390.

    Article  CAS  Google Scholar 

  • Wright, H. B., & Heatherbell, D. A. (1967). A study of respiratory trends and some associated physio-chemical changes of Chinese gooseberry fruit Actinidia chinensis (Yang-tao) during the later stages of development. New Zealand Journal of Agricultural Research, 10(3–4), 405–414.

    Article  CAS  Google Scholar 

  • Xie, M., Jiang, G. H., Zhang, H. Q., & Kawada, K. (2003, September). Effect of preharvest Ca-chelate treatment on the storage quality of kiwifruit. In V International Symposium on Kiwifruit (Vol. 610, pp. 317–324).

    Google Scholar 

  • Xiloyannis, C., Celano, G., Montanaro, G., & Dichio, B. (2002, September). Calcium absorption and distribution in mature kiwifruit plants. In V International Symposium on Kiwifruit (Vol. 610, pp. 331–334).

    Google Scholar 

  • Xu, S., Chen, X., & Sun, D. W. (2001). Preservation of kiwifruit coated with an edible film at ambient temperature. Journal of Food Engineering, 50(4), 211–216.

    Article  Google Scholar 

  • Yang, Q., Zhang, Z., Rao, J., Wang, Y., Sun, Z., Ma, Q., & Dong, X. (2013). Low-temperature conditioning induces chilling tolerance in ‘Hayward’ kiwifruit by enhancing antioxidant enzyme activity and regulating endogenous hormones levels. Journal of the Science of Food and Agriculture, 93(15), 3691–3699.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., Chen, K., Zhang, S., & Ferguson, I. (2003). The role of salicylic acid in postharvest ripening of kiwifruit. Postharvest Biology and Technology, 28(1), 67–74.

    Article  CAS  Google Scholar 

  • Zhang, Z. H., Rao, J. P., Wang, M. L., & Zhang, Z. Y. (2006). Effect of oxalic acid treatment on the fruit russet elimination and storability of kiwifruit. Journal of Fruit Science, 23(6), 888–891.

    CAS  Google Scholar 

  • Zhu, Y., Yu, J., Brecht, J. K., Jiang, T., & Zheng, X. (2016). Pre-harvest application of oxalic acid increases quality and resistance to Penicillium expansum in kiwifruit during postharvest storage. Food Chemistry, 190, 537–543.

    Article  PubMed  CAS  Google Scholar 

  • Zina, A. M., & Bundino, S. (1983). Contact urticaria to Actinidia chinensis. Contact Dermatitis, 9(1), 85–85.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meena, N.K., Baghel, M., Jain, S.K., Asrey, R. (2018). Postharvest Biology and Technology of Kiwifruit. In: Mir, S., Shah, M., Mir, M. (eds) Postharvest Biology and Technology of Temperate Fruits. Springer, Cham. https://doi.org/10.1007/978-3-319-76843-4_13

Download citation

Publish with us

Policies and ethics