Skip to main content

Pathogens and Cancer: Clonal Processes and Evolution

  • Chapter
  • First Online:
Advances in Comparative Immunology

Abstract

There is evidence of interrelations between the immune system and the development of cancer. The intersection between the two: cancer <-> immune response may depend upon the interaction with pathogens. Hosts and pathogens interact so that clones may develop. Cancer and clonal development, like other biological events evolved, seem to share an affinity: cancer and clonality are considered evolutionary processes. From a phylogenetic perspective, information supports an area of affinity. A mechanism has been identified, the existence of suppression via p53, a well-known suppressor. Returning to the relation between the development of clonal responses and an inducer may depend upon the characteristics of the pathogen. Nonpathogenic antigens induce short-lived specific responses generated and mediated by clones that are specific and therefore express specific destruction. Most pathogens (viruses, fungi, bacteria) are harmful, but some do not induce infections. The living world includes a staggering array of life, and each life form may be vulnerable to attack by pathogens that cause disease and, ultimately, death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Assaily W (2005) p53: Guardian of multicellularity? A short essay on multicellular evolution and p53. Hypothesis 1(1):14–15

    Google Scholar 

  • Bailey S, Miller BJ, Cooper EL (1971) Transplantation immunity in annelids. II. Adoptive transfer of the xenograft reaction. Immunol 21(1):81–86

    CAS  Google Scholar 

  • Barber BJ (2004) Neoplastic diseases of commercially important marine bivalves. Aquat Living Resour 17(4):449–466

    Article  Google Scholar 

  • Belyi VA et al (2010) The origins and evolution of the p53 family of genes. Cold Spring Harb Perspect Biol 2(6):1–18

    Article  Google Scholar 

  • Bilej M, Sima P, Slipka J (1992) Repeated antigenic challenge induces earthworm coelomocyte proliferation. Immunol Lett 32(2):181–184

    Article  CAS  Google Scholar 

  • Bosch TC (2014) Rethinking the role of immunity: lessons from Hydra. Trends Immunol 35(10):495–502

    Article  CAS  Google Scholar 

  • Bryant PJ, Watson KL, Justice RW, Woods DF (1993) Tumor suppressor genes encoding proteins required for cell interactions and signal transduction in Drosophila. Dev Suppl 119:239–249

    Google Scholar 

  • Burnet FM (1976) A modification of Jerne’s theory of antibody production using the concept of clonal selection. CA Cancer J Clin 26(2):119–121

    Article  CAS  Google Scholar 

  • Ciocan CM, Rotchell JM (2005) Conservation of cancer genes in the marine invertebrate Mytilus edulis. Environ Sci Technol 39(9):3029–3033

    Article  CAS  Google Scholar 

  • Cooper EL (1968) Transplantation immunity in annelids. Transplantation 6(3):322–337

    Article  CAS  Google Scholar 

  • Cooper EL (1969) Specific tissue graft rejection in earthworms. Science 166(3911):1414–1415

    Article  CAS  Google Scholar 

  • Cooper EL (2010a) Evolution of immune systems from self/not self to danger to artificial immune systems (AIS). Phys Life Rev 7:55–78

    Article  Google Scholar 

  • Cooper EL (2010b) Self/not self, innate immunity, danger, cancer potential. Phys Life Rev 7:85–87

    Article  Google Scholar 

  • Cooper EL (2010c) Earthworms: harnessing one of nature’s cancer killers. Oncol News Int 19(7):1–3

    Google Scholar 

  • Cooper EL (2016) Commentary: blurring borders: innate immunity with adaptive features. Front Immunol 7:358

    Google Scholar 

  • Cooper EL, Overstreet N (2014) Diversity, evolution, and therapeutic applications of small RNAs in prokaryotic and eukaryotic immune systems. Phys Life Rev 11(1):113–134

    Article  Google Scholar 

  • Cooper EL, Roch P (1984) Earthworm leukocyte interactions during early stages of graft rejection. J Exp Zool 232(1):67–72

    Article  CAS  Google Scholar 

  • Cooper EL, Roch P (1986) Second-set allograft responses in the earthworm Lumbricus terrestris. Transplantation 41(4):514–520

    Article  CAS  Google Scholar 

  • Cooper EL, Cossarizza A, Suzuki MM, Salvioli S, Capri M, Quaglino D, Franceschi C (1995) Autogeneic but not allogeneic earthworm effector coelomocytes kill the mammalian tumor cell target K562. Cell Immunol 166(1):113–122

    Article  CAS  Google Scholar 

  • Cooper EL, Kauschke E, Cossarizza A (2002) Digging for innate immunity since Darwin and Metchnikoff. Bioessays 24(4):319–333

    Article  CAS  Google Scholar 

  • Cooper EL et al (2012) Earthworms dilong: ancient, inexpensive, noncontroversial models may help clarify approaches to integrated medicine emphasizing neuroimmune systems. Evid Based Complement Alternat Med 2012(164152):1–11

    Article  Google Scholar 

  • Davidson CR, Best NM, Francis JW, Cooper EL, Wood TC (2008) Toll-like receptor genes (TLRs) from Capitella capitata and Helobdella robusta (Annelida). Dev Comp Immunol 32(6):608–612

    Article  CAS  Google Scholar 

  • Díaz Cosín DJ, Novo M, Fernández R (2011) Reproduction of earthworms: sexual selection and parthenogenesis. In: Karaca A (ed) Biology of earthworms. Springer, Heidelberg, pp 1–19

    Google Scholar 

  • Domazet-Lošo T, Klimovich A, Anokhin B, Anton-Erxleben F, Hamm MJ, Lange C, Bosch TC (2014) Naturally occurring tumours in the basal metazoan Hydra. Nat Commun 5(4222):1–8

    Google Scholar 

  • Dungan CF, Hamilton RM, Hudson KL, McCollough CB, Reece KS (2002) Two epizootic diseases in Chesapeake Bay commercial clams, Mya arenaria and Tagelus plebeius. Dis Aquat Org 50(1):67–78

    Article  Google Scholar 

  • Engelmann P, Pálinkás L, Cooper EL, Németh P (2005) Monoclonal antibodies identify four distinct annelid leukocyte markers. Dev Comp Immunol 29(7):599–614

    Article  CAS  Google Scholar 

  • Engelmann P, Cooper EL, Opper B, Nemeth P (2011) Chapter 14 earthworm innate immune system. Soil Biol 24:229–245

    Article  Google Scholar 

  • Farley CA, Plutschak DL, Scott RF (1991) Epizootiology and distribution of transmissible sarcoma in Maryland softshell clams, Mya arenaria, 1984–1988. Environ Health Perspect 90:35–41

    CAS  PubMed  PubMed Central  Google Scholar 

  • Francis J, Wreesman S, Yong S, Reigstad K, Krutzik S, Cooper EL (2007) Analysis of the earthworm coelomocyte cell surface for the presence of Toll-like immune receptors. Eur J Soil Biol 43:S92–S96

    Article  CAS  Google Scholar 

  • Gateff E, Wismar J, Habtemichael N, Loffler T, Dreschers S, Kaiser S, Protin U (1996) Functional analysis of Drosophila developmental genes instrumental in tumor suppression. In Vivo 10(2):211–215

    CAS  PubMed  Google Scholar 

  • Greaves M, Maley CC (2012) Clonal evolution in cancer. Nature 481(7381):306–313

    Article  CAS  Google Scholar 

  • Holbrook LA, Butler RA, Cashon RE, Van Beneden RJ (2009) Soft-shell clam (Mya arenaria) p53: a structural and functional comparison to human p53. Gene 433(1–2):81–87

    Article  CAS  Google Scholar 

  • Homa J, Bzowska M, Klimek M, Plytycz B (2008) Flow cytometric quantification of proliferating coelomocytes non-invasively retrieved from the earthworm, Dendrobaena veneta. Dev Comp Immunol 32(1):9–14

    Article  Google Scholar 

  • Homa J, Zorska A, Wesolowski D, Chadzinska M (2013) Dermal exposure to immunostimulants induces changes in activity and proliferation of coelomocytes of Eisenia andrei. J Comp Physiol B 183(3):313–322

    Article  CAS  Google Scholar 

  • Hostetter RK, Cooper EL (1973) Cellular anamnesis in earthworms. Cell Immunol 9(3):384–392

    Article  CAS  Google Scholar 

  • Hostetter RK, Cooper EL (1974) Contemporary topics in immunobiology: earthworm coelomocyte immunity. Spring 4:91–107

    Google Scholar 

  • James-Clark H (1869) On the spongiae ciliatae as infusoria flagellata; or observations on the structure, animality, and relationship of Leucosolenia botryoides. Ann Mag Nat His 1869(1):133–142. 188–215, 250–264

    Google Scholar 

  • Janic A, Mendizabal L, Llamazares S, Rossell D, Gonzalez C (2010) Ectopic expression of germline genes drives malignant brain tumor growth in Drosophila. Science 330(6012):1824–1827

    Article  CAS  Google Scholar 

  • Kelley ML et al (2001) Expression of homologues for p53 and p73 in the softshell clam (Mya arenaria), a naturally-occurring model for human cancer. Oncogene 20(6):748–758

    Article  CAS  Google Scholar 

  • King N (2004) The unicellular ancestry of animal development. Dev Cell 7(3):313–325

    Article  CAS  Google Scholar 

  • King N et al (2008) The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451(7180):783–788

    Article  CAS  Google Scholar 

  • Kvell K, Cooper EL, Engelmann P, Bovari J, Nemeth P (2007) Blurring borders: innate immunity with adaptive features. Clin Dev Immunol 2007:1–24

    Article  Google Scholar 

  • Lemmi CAE, Cooper EL (1981) Induction of coelomocyte proliferation by xenografts in the earthworm Lumbricus terrestris. Dev Comp Immunol 5:73–80

    Article  Google Scholar 

  • Levine AJ, Hu W, Feng Z (2006) The p53 pathway: what questions remain to be explored? Cell Death Differ 13(6):1027–1036

    Article  CAS  Google Scholar 

  • Loop T et al (2004) Transcriptional signature of an adult brain tumor in Drosophila. BMC Genomics 5(1):1–24

    Article  Google Scholar 

  • McLaughlin SM, Farley CA, Hetrick FM (1992) Transmission studies of sarcoma in the soft-shell clam, Mya arenaria. In Vivo 6(4):367–370

    CAS  PubMed  Google Scholar 

  • Moore JD, Elston RA, Drum AS, Wilkinson MT (1991) Alternate pathogenesis of systemic neoplasia in the bivalve mollusc Mytilus. J Invertebr Pathol 58(2):231–243

    Article  CAS  Google Scholar 

  • Mukherjee S (2010) The emperor of all maladies: a biography of cancer. HarperCollins, New York, pp 1–592

    Google Scholar 

  • Myohara M (2012) What role do annelid neoblasts play?A comparison of the regeneration patterns in a neoblast-bearing and a neoblast-lacking enchytraeid oligochaete. PLoS One 7(5):1–10

    Article  Google Scholar 

  • Nedelcu AM, Tan C (2007) Early diversification and complex evolutionary history of the p53 tumor suppressor gene family. Dev Genes Evol 217(11–12):801–806

    Article  Google Scholar 

  • Nowell PC (1976) The clonal evolution of tumor cell populations. Science 194(4260):23–28

    Article  CAS  Google Scholar 

  • Nowell PC (1978) Tumors as clonal proliferation. Virchows Arch B Cell Pathol 29(1–2):145–150

    CAS  PubMed  Google Scholar 

  • Ohsawa S, Sugimura K, Takino K, Xu T, Miyawaki A, Igaki T (2011) Elimination of oncogenic neighbors by JNK-mediated engulfment in Drosophila. Dev Cell 20(3):315–328

    Article  CAS  Google Scholar 

  • Pastor-Pareja JC, Wu M, Xu T (2008) An innate immune response of blood cells to tumors and tissue damage in Drosophila. Dis Model Mech 1(2–3):144–154

    Article  Google Scholar 

  • Pauley GB (1969) A critical review of neoplasias and tumor-like lesions in mollusks. Natl Cancer Inst Monogr 31:509–529

    CAS  PubMed  Google Scholar 

  • Pradeu T, Cooper EL (2012) The danger theory: 20 years later. Front Immunol 3(287):1–32

    Google Scholar 

  • Rutkowski R, Hofmann K, Gartner A (2010) Phylogeny and function of the invertebrate p53 superfamily. Cold Spring Harb Perspect Biol 2(7):1–14

    Article  Google Scholar 

  • Salzet M, Tasiemski A, Cooper E (2006) Innate immunity in lophotrochozoans: the annelids. Curr Pharm Des 12(24):3042–3050

    Article  Google Scholar 

  • Saville-Kent W (1881) A manual of the Infusoria: including a description of all known flagellate, ciliate and Tentaculiferous protozoa, British and foreign, and an account of the organization and affinities of the sponges. David Bogue, London, pp 289–720

    Google Scholar 

  • Sindermann CJ (1990) Principal diseases of marine fish and shellfish. Academic Press, Inc., San Diego, pp 1–519

    Google Scholar 

  • Škanta F, Roubalová R, Dvořák J, Procházková P, Bilej M (2013) Molecular cloning and expression of TLR in the Eisenia andrei earthworm. Dev Comp Immunol 41(4):694–702

    Article  Google Scholar 

  • Slee EA, O’Connor DJ, Lu X (2004) To die or not to die: how does p53 decide? Oncogene 23(16):2809–2818

    Article  CAS  Google Scholar 

  • Sparks AK (1985) Synopsis of invertebrate pathology exclusive of insects. Elsevier, Amsterdam, pp 1–423

    Google Scholar 

  • Sugio M, Yoshida-Noro C, Ozawa K, Tochinai S (2012) Stem cells in asexual reproduction of Enchytraeus japonensis (Oligochaeta, Annelid): proliferation and migration of neoblasts. Develop Growth Differ 54(4):439–450

    Article  Google Scholar 

  • Suh EK et al (2006) p63 protects the female germ line during meiotic arrest. Nature 444(7119):624–628

    Article  CAS  Google Scholar 

  • Tadokoro R, Sugio M, Kutsuna J, Tochinai S, Takahashi Y (2006) Early segregation of the germ and somatic lineages during gonadal regeneration in the annelid Enchytraeus japonensis. Curr Biol 16(10):1012–1017

    Article  CAS  Google Scholar 

  • Taylor PD, Day T, Nagy D, Wild G, André JB, Gardner A (2006) The evolutionary consequences of plasticity in host-pathogen interactions. Theor Popul Biol 69(3):323–331

    Article  Google Scholar 

  • Terhivuo J, Saura A (2003) Low clonal diversity and morphometrics in the parthenogenetic earthworm Octolasion cyaneum. Pedobiologia 47:434–439

    Google Scholar 

  • Terhivuo J, Saura A (2006) Dispersal and clonal diversity of North-European parthenogenetic earthworms. Biol Invasions 8:1205–1218

    Article  Google Scholar 

  • Thomas C, Strutt D (2014) Rabaptin-5 and Rabex-5 are neoplastic tumour suppressor genes that interact to modulate Rab5 dynamics in Drosophila melanogaster. Dev Biol 385(1):107–121

    Article  CAS  Google Scholar 

  • Tipping M, Perrimon N (2014) Drosophila as a model for context-dependent tumorigenesis. J Cell Physiol 229(1):27–33

    CAS  PubMed  PubMed Central  Google Scholar 

  • Walker CW et al (2011) p53 Superfamily proteins in marine bivalve cancer and stress biology. Adv Mar Biol 59:1–36

    Article  Google Scholar 

  • Watson KL, Justice RW, Bryant PJ (1994) Drosophila in cancer research: the first fifty tumor suppressor genes. J Cell Sci Suppl 18:19–33

    Article  CAS  Google Scholar 

  • Williams CJ (2001) Cancer caused by worms. Los Angeles Times Magazine, pp 40–41

    Google Scholar 

  • Yang A, Kaghad M, Caput D, McKeon F (2002) On the shoulders of giants: p63, p73 and the rise of p53. Trends Genet 18(2):90–95

    Article  Google Scholar 

  • Yoshida-Noro C, Tochinai S (2010) Stem cell system in asexual and sexual reproduction of Enchytraeus japonensis (Oligochaeta, Annelida). Develop Growth Differ 52(1):43–55

    Article  CAS  Google Scholar 

Download references

Acknowledgements

I wish to express sincere appreciation to Hillary Brown, whose dedication helped immeasurably to prepare the final version. Nora Wells, Jason Lee, Nicola Overstreet, and Ralph Albert, my students, also worked during the early stages to develop this manuscript.

With kind permission from Springer Science+Business Media: Earthworm Innate Immune System, chapter 14/article title, 24, 2011, 229–45, Engelmann P, Cooper EL, Opper B, Nemeth P Fig. 14.1. Soil Biol.

Reprinted with permission from Macmillan Publishers Ltd. on behalf of Cancer Research UK: Greaves M, Maley CC (2012) Clonal evolution in cancer. Nature 481(7381): 306–13.

We also acknowledge the reproduced/adapted with permission Figs. 2, 3, 5 and 6 from Ohsawa S, Sugimura K, Takino K, Xu T, Miyawaki A, Igaki T (2011) Elimination of oncogenic neighbors by JNK-mediated engulfment in Drosophila. Dev Cell 20(3): 315–28, and Lemmi Carlos AE, Cooper EL (1981) Induction of coelomocyte proliferation by xenografts in the earthworm Lumbricus terrestris. Dev Comp Immunol 5:73–80.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin L. Cooper .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cooper, E.L. (2018). Pathogens and Cancer: Clonal Processes and Evolution. In: Cooper, E. (eds) Advances in Comparative Immunology. Springer, Cham. https://doi.org/10.1007/978-3-319-76768-0_31

Download citation

Publish with us

Policies and ethics