Skip to main content

Reptilia: Cellular Immunity in Reptiles: Perspective on Elements of Evolution

  • Chapter
  • First Online:

Abstract

To understand the evolution of the immune system and its related genes, studies on reptiles are essential because they occupy a key phylogenetic position as a sister group to both birds and mammals. Reptiles comprise diverse groups presenting vast differences in morphology, reproductive, and developmental characteristics among its clades. They form the link between anamniotic amphibians and amniotic birds and are the first terrestrial animals to encounter full-blown land pathogens. Though much is known on the innate immunity of reptiles, the cellular components and cell-mediated immunity are largely unknown. Thus, the study of cellular immunity in nonavian reptiles will fill an important gap in reconstructing the evolutionary history of amniote vertebrates, which to date has been poorly represented. This chapter aims to annotate the missing links in reptilian immunology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alföldi J, di Palma F, Grabherr M, Williams C, Kong L, Mauceli E, Russell P, Lowe CB, Glor RE, Jaffe JD, Ray DA, Boissinot S, Shedlock AM, Botka C, Castoe TA, Colbourne JK, Fujita MK, Moreno RG, Hallers ten BF, Haussler D, Heger A, Heiman D, Janes DE, Johnson J, de Jong PJ, Koriabine MY, Lara M, Novick PA, Organ CL, Peach SE, Poe S, Pollock DD, de Queiroz K, Sanger T, Searle S, Smith JD, Smith Z, Swofford R, Turner-Maier J, Wade J, Young S, Zadissa A, Edwards SV, Glenn TC, Schneider CJ, Losos JB, Lander ES, Breen M, Ponting CP, Lindblad-Toh K (2011) The genome of the green anole lizard and a comparative analysis with birds and mammals. Nature 477(7366):587–591

    Article  PubMed  PubMed Central  Google Scholar 

  • Arakawa H, Saribasak H, Buerstedde JM (2004) Activation-induced cytidine deaminase initiates immunoglobulin gene conversion and hypermutation by a common intermediate. PLoS Biol 2(7):e179

    Article  PubMed  PubMed Central  Google Scholar 

  • Ariel E (2011) Viruses in reptiles. Ariel Vet Res 42:100. http://www.veterinaryresearch.org/content/42/1/100

    Article  PubMed  Google Scholar 

  • Bach P, Kamphuis E, Odermatt B, Sutter G, Buchholz CJ, Kalinke U (2007) Vesicular stomatitis virus glycoprotein displaying retrovirus-like particles induce a type I IFN receptor-dependent switch to neutralizing IgG antibodies. J Immunol 178(9):5839–5847

    Article  CAS  PubMed  Google Scholar 

  • Bertram EM, Wilkinson RG, Lee BA, Jilbert AR, Kotlarski I (1996) Identification of duck T lymphocytes using an anti-human T cell (CD3) antiserum. Vet Immunol Immunopathol 51(3–4):353–363

    Article  CAS  PubMed  Google Scholar 

  • Boehm T (2011) Design principles of adaptive immune systems. Nat Rev Immunol 11(5):307

    Article  CAS  PubMed  Google Scholar 

  • Brown DR (2002) Mycoplasmosis and immunity of fish and reptiles. Front Biosci 7:D1338–D1346

    Article  CAS  PubMed  Google Scholar 

  • Burnham DK, Keall SN, Nelson NJ, Daugherty CH (2005) T cell function in tuatara (Sphenodon punctatus). Comp Immunol Microbiol Infect Dis 28(3):213–222

    Article  PubMed  Google Scholar 

  • Castoe TA, Poole AW, de Koning AJ, Jones KL, Tomback DF, Oyler-McCance SJ, Fike JA, Lance SL, Streicher JW, Smith EN, Pollock DD (2012) Rapid microsatellite identification from Illumina paired-end genomic sequencing in two birds and a snake. PloS One 7(2):e30953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen SN, Huang B, Zhang XW, Li Y, Zhao LJ, Li N, Gao Q, Nie P (2013) IFN-γ and its receptors in a reptile reveal the evolutionary conservation of type II IFNs in vertebrates. Dev Comp Immunol 41(4):587–596

    Article  CAS  PubMed  Google Scholar 

  • Chong AY, Kojima KK, Jurka J, Ray DA, Smit AFA, Isberg SR, Gongora J (2014) Evolution and gene capture in ancient endogenous retroviruses – insights from the crocodilian genomes. Retrovirology 11:71. https://doi.org/10.1186/s12977-014-0071-2

    Article  PubMed Central  PubMed  Google Scholar 

  • Cook MT, Morrison RN, Wilkinson R, Nowak BF, Hayball PJ, Hayball JD (2001) A screen of mammalian antibodies on snapper (Pagrus auratus, Sparidae) peripheral blood leukocytes reveals cross reactivity of an anti-human CD3 antibody with a population of mIg−cells. Dev Comp Immunol 25(7):553–559

    Article  CAS  PubMed  Google Scholar 

  • Cooper MA, Yokoyama WM (2010) Memory-like responses of natural killer cells. Immunol Rev 235(1):297–305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Decker T, Müller M, Stockinger S (2005) The yin and yang of type I interferon activity in bacterial infection. Nat Rev Immunol 5(9):675

    Article  CAS  PubMed  Google Scholar 

  • Deza F, Espinel CS (2008) IgD in the reptile leopard gecko. Mol Immunol 45(12):3470–3476

    Article  Google Scholar 

  • Deza FG, Espinel CS, Beneitez JV (2007) A novel IgA-like immunoglobulin in the reptile Eublepharis macularius. Dev Comp Immunol 31(6):596–605

    Article  PubMed  Google Scholar 

  • Digby MR, Lowenthal JW (1995) Cloning and expression of the chicken interferon-gamma gene. J Interferon Cytokine Res 15:939945

    Article  Google Scholar 

  • Du Pasquier L (1992) Origin and evolution of the vertebrate immune system. APMIS: acta pathologica, microbiologica, et immunologica. Scandinavica 100(5):383–392

    Google Scholar 

  • El Deeb S, Zada S, El Ridi R (1985) Ontogeny of hemopoietic and lymphopoietic tissues in the lizard Chalcides ocellatus (Reptilia, Sauna, Scincidae). J Morphol. https://doi.org/10.1002/jmor.1051850209

    Article  PubMed  Google Scholar 

  • El Masri M, Saar AH, Mansour MH, Badir N (1995) Seasonal distribution and hormonal modulation of reptilian T cells. Immunobiology 193(1):15–41

    Article  PubMed  Google Scholar 

  • El Ridi R, Badir N, Rouby SE (1981) Effect of seasonal variations on the immune system of the snake, Psammophis schokari. J Exp Zool 216(3):357–365

    Article  Google Scholar 

  • El Ridi R, Wahby AF, Saad AH, Soliman MAW (1987) Concanavalin A responsiveness and interleukin 2 production in the snake Spalersophis diadema. Immunobiology 174:177–189

    Article  PubMed  Google Scholar 

  • Farag MA, El Ridi R (1990) Functional markers of the major histocompatibility gene complex of snakes. Eur J Immunol 20:2029–2033

    Article  CAS  PubMed  Google Scholar 

  • Gilbert C, Meik JM, Dashevsky D, Card DC, Castoe TA, Schaack S (2014) Endogenous hepadnaviruses, bornaviruses and circoviruses in snakes. Proc R Soc Lond B Biol Sci 281(1791):20141122

    Article  CAS  Google Scholar 

  • Göbel TW, Meier EL, Du Pasquier L (2000) Biochemical analysis of the Xenopus laevis TCR/CD3 complex supports the “stepwise evolution” model. Eur J Immunol 30(10):2775–2781

    Article  PubMed  Google Scholar 

  • Gouaillard C, Huchenq-Champagne A, Arnaud J, Chen CL, Rubin B (2001) Evolution of T cell receptor (TCR) α β heterodimer assembly with the CD3 complex. Eur J Immunol 31(12):3798–3805

    Article  CAS  PubMed  Google Scholar 

  • Green RE et al (2014) Three crocodilian genomes reveal ancestral patterns of evolution among archosaurs. Science 346(6215):1254449. https://doi.org/10.1126/science.1254449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grossberger D, Parham P (1992) Reptilian class I major histocompatibility complex genes reveal conserved elements in class I structure. Immunogenetics 36(3):166–174

    Article  CAS  PubMed  Google Scholar 

  • Hareramadas B, Rai U (2005) Mechanism of androgen-induced thymic atrophy in the wall lizard, Hemidactylus Flaviviridis: an in vitro study. Gen Comp Endocrinol 144(1):10–19

    Article  CAS  PubMed  Google Scholar 

  • Hareramadas B, Rai U (2006) Cellular mechanism of estrogen-induced thymic involution in wall lizard: caspase-dependent action. J Exp Zool A: Comp Exp Biol 305A(5):396–409

    Article  CAS  Google Scholar 

  • Hedrick PW, Miller PS (1994) Rare alleles, MHC and captive breeding. In: Conservation genetics. Birkhäuser, Basel, pp 187–204

    Chapter  Google Scholar 

  • Höglund P, Brodin P (2010) Current perspectives of natural killer cell education by MHC class I molecules. Nat Rev Immunol 10(10):724

    Article  PubMed  Google Scholar 

  • Horton TL, Ritchie P, Watson MD, Horton JD (1996) NK-like activity against allogeneic tumour cells demonstrated in the spleen of control and thymectomized Xenopus. Immunol Cell Biol 74(4):365–373

    Article  CAS  PubMed  Google Scholar 

  • Hugall AF, Foster R, Lee MS (2007) Calibration choice, rate smoothing, and the pattern of tetrapod diversification according to the long nuclear gene RAG-1. Syst Biol 56(4):543–563

    Article  CAS  PubMed  Google Scholar 

  • Jaffredo T, Fellah JS, Dunon D (2005) Immunology of birds and reptiles. In: Encyclopedia of Life Sciences. John Wiley & Sons, Ltd: Chichester. http://www.els.net/ [https://doi.org/10.1038/npg.els.0000521].

  • Jaratlerdsiri W, Isberg SR, Higgins DP, Ho SY, Salomonsen J, Skjodt K, Miles LG, Gongora J (2014) Evolution of MHC class I in the Order Crocodylia. Immunogenetics 66(1):53–65

    Article  PubMed  Google Scholar 

  • Jaratlerdsiri W, Deakin J, Godinez RM, Shan X, Peterson DG, Marthey S, Lyons E, McCarthy FM, Isberg SR, Higgins DP, Chong AY (2014a) Comparative genome analyses reveal distinct structure in the saltwater crocodile MHC. PloS One 9(12):e114631

    Article  PubMed  PubMed Central  Google Scholar 

  • Jones K, Ariel E, Burgess G, Read M (2016) A review of fibropapillomatosis in green turtles (Chelonia mydas). Vet J 212:48–57

    Article  CAS  PubMed  Google Scholar 

  • Kanakambika P, Muthukkaruppan VR (1972) The immune response to sheep erythrocytes in the lizard Calotes versicolor. J Immunol 109:415–420

    CAS  PubMed  Google Scholar 

  • Kaufman J, Milne S, Gobel TW, Walker BA (1999) The chicken B locus is a minimal essential major histocompatibility complex. Nature 401(6756):923

    Article  CAS  PubMed  Google Scholar 

  • Keller JM, Kannan K, Taniyasu S, Yamashita N, Day RD, Arendt MD, Segars AL, Kucklick JR (2005a) Perfluorinated compounds in the plasma of loggerhead and Kemp’s ridley sea turtles from the southeastern coast of the United States. Environ Sci Technol 39(23):9101–9108

    Article  CAS  PubMed  Google Scholar 

  • Keller JM, McClellan-Green PD, Lee AM, Arendt MD, Maier PP, Segars AL, Whitaker JD, Keil DE, Peden-Adams MM (2005b) Mitogen-induced lymphocyte proliferation in loggerhead sea turtles: comparison of methods and effects of gender, plasma testosterone concentration, and body condition on immunity. Vet Immunol Immunopathol 103:269–281

    Article  CAS  PubMed  Google Scholar 

  • Keller JM, McClellan-Green PD, Kucklick JR, Keil DE, PedenAdams MM (2006) Effects of organochlorine contaminants on loggerhead sea turtle immunity: comparison of a correlative field study and in vitro exposure experiments. Environ Health Perspect 114:70–76

    Article  CAS  PubMed  Google Scholar 

  • Kelley J, Walter L, Trowsdale J (2005) Comparative genomics of major histocompatibility complexes. Immunogenetics 56(10):683–695

    Article  CAS  PubMed  Google Scholar 

  • Klein J (1987) The major histocompatibility complex and protein recognition by T lymphocytes. Adv Exp Med Biol 225:1–10

    Article  CAS  PubMed  Google Scholar 

  • Krebs P, Barnes MJ, Lampe K, Whitley K, Bahjat KS, Beutler B, Janssen E, Hoebe K (2009) NK cell–mediated killing of target cells triggers robust antigen-specific T cell–mediated and humoral responses. Blood 113(26):6593–6602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V, McNerney ME (2005) A new self: MHC-class-I-independent natural-killer-cell self-tolerance. Nat Rev Immunol 5(5):363–374

    Article  CAS  PubMed  Google Scholar 

  • Kvell K, Cooper EL, Engelmann P, Bovari J, Nemeth P (2007) Blurring borders: innate immunity with adaptive features. Clin Dev Immunol 1–10:83671. https://doi.org/10.1155/2007/83671

    Article  Google Scholar 

  • Leceta J, Zapata A (1985) Seasonal changes in the thymus and spleen of the turtle, Mauremys caspica. A morphometrical, light microscopical study. Dev Comp Immunol 9(4):653–668

    Article  CAS  PubMed  Google Scholar 

  • Litman GW, Anderson MK, Jonathan PR (1999) Evolution of antigen binding receptors. Annu Rev Immunol 17(1):109–147

    Article  CAS  PubMed  Google Scholar 

  • Loetscher P, Seitz M, Clark-Lewis I, Baggiolini M, Moser B (1994) Both interleukin-8 receptors independently mediate chemotaxis. Jurkat cells transfected with IL-8R1 or IL-8R2 migrate in response to IL-8, GRO alpha and NAP-2. FEBS Lett 21;341(2-3):187–192

    Article  CAS  PubMed  Google Scholar 

  • Longenecker BM, Mosmann TR (1981) Structure and properties of the major histocompatibility complex of the chicken. Speculations on the advantages and evolution of polymorphism. Immunogenetics 13(1):1–23

    Article  CAS  PubMed  Google Scholar 

  • Madsen T, Ujvari B (2011) The potential demise of a population of adders (Vipera berus) in Smygehuk, Sweden. Beata Ujvari University of New South Wales, beatau@uow.edu.au. Research Article. 72

    Google Scholar 

  • Madsen T, Ujvari B, Nandakumar KS, Hasselquist D, Holmdahl R (2007) Do “infectious” prey select for high levels of natural antibodies in tropical pythons? Evol Ecol 21(2):271–279

    Article  Google Scholar 

  • Manickasundari M, Selvaraj P, Pitchappan RM (1984) Studies on T-cells of the lizard, Calotes versicolor: adherent and non-adherent populations of the spleen. Dev Comp Immunol 8(2):367–374

    Article  CAS  PubMed  Google Scholar 

  • Marchalonis JJ, Ealey EH, Diener E (1969) Immune response of the tuatara, Sphenodon punctatum. Aust J Exp Biol Med Sci 47(3):367–380

    Article  CAS  PubMed  Google Scholar 

  • Marschang RE, Ihász K, Kugler R, Lengyel G, Fehér E, Marton S, Bányai K, Aqrawi T, Farkas SL (2016) Development of a consensus reverse transcription PCR assay for the specific detection of tortoise picornaviruses. J Vet Diagn Invest 28(3):309–314

    Article  CAS  PubMed  Google Scholar 

  • McArthur S, Wilkinson R, Meyer J (2004) Medicine and Surgery of Tortoises and Turtles. ISBN: 978-1-4051-0889-8.Wiley-Blackwell

    Google Scholar 

  • Merchant ME, Roche C, Elsey RM, Prudhomme J (2003) Antibacterial properties of serum from the American alligator (Alligator mississippiensis). Comp Biochem Physiol B: Biochem Mol Biol 136(3):505–513

    Article  Google Scholar 

  • Merchant M, Thibodeaux D, Loubser K, Elsey RM (2004) Amoebacidal effects of serum from the American alligator (Alligator mississippiensis). J Parasitol 90(6):1480–1483

    Article  PubMed  Google Scholar 

  • Miller HC, Belov K, Daugherty CH (2005) Characterization of MHC class II genes from an ancient reptile lineage, Sphenodon (tuatara). Immunogenetics 57(11):883–891

    Article  CAS  PubMed  Google Scholar 

  • Miller HC, O’Meally D, Ezaz T, Amemiya C, Marshall-Graves JA, Edwards S (2015) Major histocompatibility complex genes map to two chromosomes in an evolutionarily ancient reptile, the Tuatara Sphenodon punctatus. G3: Genes Genomes Genetics 5(7):1439–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mondal S, Rai U (2001) In vitro effect of temperature on phagocytic and cytotoxic activities of splenic phagocytes of the wall lizard, Hemidactylus flaviviridis. Comp Biochem Physiol A Mol Integr Physiol 129(2):391–398

    Article  CAS  PubMed  Google Scholar 

  • Montali RJ (1988) Comparative pathology of inflammation in the higher vertebrates (reptiles, birds and mammals). J Comp Pathol 99(1):1–26

    Article  CAS  PubMed  Google Scholar 

  • Muñoz FJ, De la Fuente M (2004) Seasonal changes in lymphoid distribution of the turtle Mauremys caspica. Copeia 2004(1):178–183

    Article  Google Scholar 

  • Munoz FA, Estrada-Parra S, Romero-Rojas A, Work TM, Gonzalez-Ballesteros E, Estrada-Garcia I (2009) Identification of CD3+ T lymphocytes in the green turtle Chelonia mydas. Vet Immunol Immunopathol 131:211–217

    Article  CAS  PubMed  Google Scholar 

  • Natarajan K, Muthukkaruppan VR (1985) Distribution and ontogeny of B cells in the garden lizard, Calotes versicolor. Distribution and ontogeny of B cells in the garden lizard, Calotes versicolor. Dev Comp Immunol 9(2):01–310. ISSN 0145-305X

    Article  Google Scholar 

  • Ochesenbein AF, Zinkernagel RM (2000) Natural antibodies and complement link innate and acquired immunity. Immunol Today 21(12):624–630

    Article  Google Scholar 

  • Ohta Y, Goetz W, Hossain MZ, Nonaka M, Flajnik MF (2006) Ancestral organization of the MHC revealed in the amphibian Xenopus. J Immunol 176(6):3674–3685

    Article  CAS  PubMed  Google Scholar 

  • Olsson M, Madsen T, Nordby J, Wapstra E, Ujvari B, Wittsell H (2003) Major histocompatibility complex and mate choice in sand lizards. Proc R Soc Lond B Biol Sci 270(Suppl 2):S254–S256

    Article  CAS  Google Scholar 

  • Origgi FC, Klein PA, Mathes K, Blahak S, Marschang RE, Tucker SJ et al (2001) Enzyme-linked immunosorbent assay for detecting herpesvirus exposure in Mediterranean tortoises (spur-thighed tortoise [Testudo graeca] and Hermann’s tortoise [Testuto hermanni]). J Clin Microbiol 39:3156–3163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pestka S, Krause CD, Walter MR (2004) Interferons, interferon-like cytokines, and their receptors. Immunol Rev 202:8–32

    Article  CAS  PubMed  Google Scholar 

  • Priyam M, Tripathy M, Rai U, Ghorai SM (2016) Tracing the evolutionary lineage of pattern recognition receptor homologues in vertebrates: An insight into reptilian immunity via de novo sequencing of the wall lizard splenic transcriptome. Vet Immunol Immunopathol 172:26–37

    Article  CAS  PubMed  Google Scholar 

  • Qi Z, Nie P, Secombes CJ, Zou J (2010) Intron-Containing Type I and Type III IFN Coexist in Amphibians: refuting the concept that a retro-position event gave rise to type-1 IFNs. J Immunol, ol.0903374. http://www.jimmunol.org/content/early/2010/03/31/jimmun

  • Radtkey RR, Becker B, Miller RD, Riblet R, Case TJ (1996) Variation and evolution of class I MHC in sexual and parthenogenetic geckos. Proc R Soc Lond B Biol Sci 263(1373):1023–1032

    Article  CAS  Google Scholar 

  • Saad AH (1989) Sex-associated differences in the mitogenic responsiveness of snake blood lymphocytes. Dev Comp Immuno 13(3):225–229

    Article  CAS  Google Scholar 

  • Saad AH, El Ridi R (1984) Mixed leukocyte reaction, graft-versus-host reaction and skin allograft rejection in the lizard, Chalcides ocellatus. Immunobiology 166:484

    Article  CAS  PubMed  Google Scholar 

  • Saad AH, Zapata A (1992) Reptilian thymus gland: an ultrastructural overview. Thymus 20(3):135

    CAS  PubMed  Google Scholar 

  • Sacchi R, Capelli E, Scali S, Pellitteri-Rosa D, Ghitti M, Acerbi E, Pingitore E (2014) In vitro temperature dependent activation of T-lymphocytes in 46 Common wall lizards (Podarcis muralis) in response to PHA stimulation. Acta Herpetologica 9(2):131–138. https://doi.org/10.13128/Acta_Herpetol-13188

  • Sandmeier FC, Tracy RC (2014) The metabolic pace-of-life model: incorporating ectothermic organisms into the theory of vertebrate. Ecoimmunology 54:387–395

    CAS  Google Scholar 

  • Savan R, Ravichandran S, Collins JR, Sakai M, Young HA (2009) Structural conservation of interferon gamma among vertebrates. Cytokine Growth Factor Rev 20(2):115–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaffer HB, Minx P, Warren DE, Shedlock AM, Thomson RC, Valenzuela N, Abramyan J, Amemiya CT, Badenhorst D, Biggar KK, Borchert GM (2013) The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage. Genome Biol 14(3):R28

    Article  PubMed  Google Scholar 

  • Shaney KJ, Card DC, Schield DR, Ruggiero RP, Pollock DD, Mackessy SP, Castoe TA (2014) Squamate reptile genomics and evolution. In: Toxinology. Springer, Netherlands, pp 1–18

    Google Scholar 

  • Shen L, Stuge TB, Bengtén E, Wilson M, Chinchar VG, Naftel JP, Bernanke JM, Clem LW, Miller NW (2004) Identification and characterization of clonal NK-like cells from channel catfish (Ictalurus punctatus). Dev Comp Immunol 28(2):139–152

    Article  CAS  PubMed  Google Scholar 

  • St John JA, Braun EL, Isberg SR, Miles LG, Chong AY, Gongora J, Dalzell P, Moran C, Bed'Hom B, Abzhanov A, Burgess SC (2012) Sequencing three crocodilian genomes to illuminate the evolution of archosaurs and amniotes. Genome Biol 13(1):415

    Article  PubMed  PubMed Central  Google Scholar 

  • Straub C, Neulen ML, Sperling B, Windau K, Zechmann M, Jansen CA, Viertlboeck BC, Göbel TW (2013) Chicken NK cell receptors. Dev Comp Immunol 41(3):324–333

    Article  CAS  PubMed  Google Scholar 

  • Sun JC, Lanier LL (2009) Natural killer cells remember: an evolutionary bridge between innate and adaptive immunity? Eur J Immunol 39(8):2059–2064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun JC, Joseph C, Joshua N, Lewis B, Lanier L (2009) Adaptive immune features of natural killer cells. Nature 457(7229):557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sypek JP, Borysenko M, Findlay SR (1984) Anti-immunoglobulin induced histamine release from naturally abundant basophils in the snapping turtle, Chelydra serpentina. Dev Comp Immunol 8(2):359–366

    Article  CAS  PubMed  Google Scholar 

  • Trinchieri G (2010) Type I interferon: friend or foe? J Exp Med 207(10):2053–2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turchin A, Hsu E (1996) The generation of antibody diversity in the turtle. J Immunol 156(10):3797–3805

    CAS  PubMed  Google Scholar 

  • Ulsh BA, Congdon JD, Hinton TG, Whicker FW, Bedford JS (2000) Culture methods for turtle lymphocytes. Methods Cell Sci 22(4):285–297

    Article  CAS  PubMed  Google Scholar 

  • Vonk FJ, Casewell NR, Henkel CV, Heimberg AM, Jansen HJ, McCleary RJ, Kerkkamp HM, Vos RA, Guerreiro I, Calvete JJ, Wüster W (2013) The king cobra genome reveals dynamic gene evolution and adaptation in the snake venom system. Proc Natl Acad Sci 110(51):20651–20656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voogdt CG, Bouwman LI, Kik MJ, Wagenaar JA, van Putten JP (2016) Reptile Toll-like receptor 5 unveils adaptive evolution of bacterial flagellin recognition. Sci Rep 6:19046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang T, Sun Y, Shao W, Cheng G, Li L, Cao Z, Yang Z, Zou H, Zhang W, Han B, Hu Y (2012) Evidence of IgY subclass diversification in snakes: evolutionary implications. J Immunol 189(7):3557–3565

    Article  CAS  PubMed  Google Scholar 

  • Warr GW, Magor KE, Higgins DA (1995) IgY: clues to the origins of modern antibodies. Immunol Today 16:392–398. https://doi.org/10.1016/0167-5699(95)80008-5

    Article  CAS  PubMed  Google Scholar 

  • Wei Z, Wu Q, Ren L, Hu X, Guo Y, Warr GW, Hammarström L, Li N, Zhao Y (2009) Expression of IgM, IgD, and IgY in a reptile, Anolis carolinensis. J Immunol 183(6):3858–3864. https://doi.org/10.4049/jimmunol.0803251

    Article  CAS  PubMed  Google Scholar 

  • Work TM, Balazs GH, Rameyer RA, Chang SP, Berestecky J (2000) Assessing humoral and cell-mediated immune response in Hawaiian green turtles, Chelonia mydas. Vet Immunol Immunopathol 74(3):179–194

    Article  CAS  PubMed  Google Scholar 

  • Wu S, Gao J, Dinh QT, Chen C, Fimmel S (2008) IL-8 production and AP-1 transactivation induced by UVA in human keratinocytes: roles of D-alpha-tocopherol. Mol Immunol 45(8):2288–2296. https://doi.org/10.1016/j.molimm.2007.11.019

    Article  CAS  PubMed  Google Scholar 

  • Yoder JA (2004) Investigating the morphology, function and genetics of cytotoxic cells in bony fish. Comp Biochem Physiol C Toxicol Pharmacol 138(3):271–280

    Article  PubMed  Google Scholar 

  • Zimmerman LM, Vogel LA, Bowden RM (2010) Understanding the vertebrate immune system: insights from the reptilian perspective. J Exp Biol 213:661–671

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Secombes CJ (2011) Teleost fish interferons and their role in immunity. Dev Comp Immunol 35(12):1376–1387

    Article  CAS  PubMed  Google Scholar 

  • Zucker K, Lu P, Esquenazi V, Miller J (1992) Cloning of the cDNA for canine interferon-gamma. J Interf Res 12(3):191–194

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This chapter was inspired by Edwin L. Cooper, PhD, ScD, highly distinguished professor, Laboratory of Comparative Immunology, Department of Neurobiology, David Geffen School of Medicine, UCLA, and founding editor in chief of DCI (1977), eCAM (2004), and JECM (2009). I am highly indebted to him for his faith in our potential for contributing a chapter on cellular immunity in reptiles.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soma Mondal Ghorai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghorai, S.M., Priyam, M. (2018). Reptilia: Cellular Immunity in Reptiles: Perspective on Elements of Evolution. In: Cooper, E. (eds) Advances in Comparative Immunology. Springer, Cham. https://doi.org/10.1007/978-3-319-76768-0_21

Download citation

Publish with us

Policies and ethics