Skip to main content

Chondrichthyes: The Immune System of Cartilaginous Fishes

  • Chapter
  • First Online:

Abstract

The cartilaginous fishes (sharks, skates, rays, and chimaeras) hold a key evolutionary position, being the most distant group to mammals that possesses a “mammalian-like” adaptive immune system based on immunoglobulins (Ig) and T cell receptors (TCRs), which are somatically rearranged by recombination-activating gene (RAG) proteins, as well as polymorphic/polygenic major histocompatibility complex (MHC) molecules. Cartilaginous fishes are therefore an important research model to investigate the evolution of adaptive immunity and its interplay with the innate system. Despite this, cartilaginous fishes have historically been understudied; while early functional studies revealed sharks were able to produce a humoral response following immune stimulation, subsequent progress was hampered by bottlenecks in immune gene sequencing and a paucity of research tools (such as cell lines and monoclonal antibodies) for use in functional studies.

Recent advances in high-throughput sequencing technologies have allowed us to address at least one of these limitations. With the recent publication of draft genomes for the elephant shark, little skate, and whale shark, in addition to a rapidly increasing number of transcriptomes from various elasmobranch species, we are beginning to fill the gaps in our knowledge of the immune molecules present, thereby gaining a more comprehensive understanding of immune functioning in this key vertebrate group.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Anandhakumar C et al (2012) Expression profile of toll-like receptor 2 mRNA in selected tissues of shark (Chiloscyllium sp.). Fish Shellfish Immunol 33(5):1174–1182

    Article  CAS  PubMed  Google Scholar 

  • Aybar L, Shin DH, Smith SL (2009) Molecular characterization of the alpha subunit of complement component C8 (GcC8alpha) in the nurse shark (Ginglymostoma cirratum). Fish Shellfish Immunol 27(3):397–406

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bandukwala HS et al (2011) Structure of a domain-swapped FOXP3 dimer on DNA and its function in regulatory T cells. Immunity 34(4):479–491

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bartl S, Nonaka M (2014) MHC molecules of cartilaginous fishes. In: Smith SL, Sim RB, Flajnik M (eds) Immunobiology of the shark. CRC press, Boca Raton, pp 173–198

    Chapter  Google Scholar 

  • Bartl S, Weissman IL (1994) Isolation and characterization of major histocompatibility complex class IIB genes from the nurse shark. Proc Natl Acad Sci U S A 91(1):262–266

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bartl S et al (1997) Identification of class I genes in cartilaginous fish, the most ancient group of vertebrates displaying an adaptive immune response. J Immunol 159(12):6097–6104

    CAS  PubMed  Google Scholar 

  • Bird S et al (2002) The first cytokine sequence within cartilaginous fish: IL-1 beta in the small spotted catshark (Scyliorhinus canicula). J Immunol 168(7):3329–3340

    Article  CAS  PubMed  Google Scholar 

  • Bubeck D (2014) The making of a macromolecular machine: assembly of the membrane attack complex. Biochemistry 53(12):1908–1915

    Article  CAS  PubMed  Google Scholar 

  • Castro CD et al (2013) Noncoordinate expression of J-chain and Blimp-1 define nurse shark plasma cell populations during ontogeny. Eur J Immunol 43(11):3061–3075

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen H et al (2009) Characterization of arrangement and expression of the T cell receptor gamma locus in the sandbar shark. Proc Natl Acad Sci U S A 106(21):8591–8596

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen H et al (2010) Characterization of arrangement and expression of the beta-2 microglobulin locus in the sandbar and nurse shark. Dev Comp Immunol 34(2):189–195

    Article  CAS  PubMed  Google Scholar 

  • Chen H et al (2012) Somatic hypermutation of TCR gamma V genes in the sandbar shark. Dev Comp Immunol 37(1):176–183

    Article  CAS  PubMed  Google Scholar 

  • Clem LW, Small PA Jr (1967) Phylogeny of immunoglobulin structure and function. I. Immunoglobulins of the lemon shark. J Exp Med 125(5):893–920

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clem IW, De BF, Sigel MM (1967) Phylogeny of immunoglobulin structure and function. II. Immunoglobulins of the nurse shark. J Immunol 99(6):1226–1235

    CAS  PubMed  Google Scholar 

  • Conticello SG et al (2005) Evolution of the AID/APOBEC family of polynucleotide (Deoxy)cytidine deaminases. Mol Biol Evol 22:367–377

    Article  CAS  PubMed  Google Scholar 

  • Criscitiello MF (2014) Shark T cell receptors. In: Smith SL, Sim RB, Flajnik M (eds) Immunobiology of the shark. CRC Press, Boca Raton, pp 237–248

    Chapter  Google Scholar 

  • Criscitiello MF, Saltis M, Flajnik MF (2006) An evolutionarily mobile antigen receptor variable region gene: doubly rearranging NAR-TcR genes in sharks. Proc Natl Acad Sci U S A 103(13):5036–5041

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Criscitiello MF et al (2010) Evolutionarily conserved TCR binding sites, identification of T cells in primary lymphoid tissues, and surprising trans-rearrangements in nurse shark. J Immunol 184(12):6950–6960

    Article  CAS  PubMed  Google Scholar 

  • Criscitiello MF et al (2012) Shark class II invariant chain reveals ancient conserved relationships with cathepsins and MHC class II. Dev Comp Immunol 36(3):521–533

    Article  CAS  PubMed  Google Scholar 

  • Crouch K et al (2013) Humoral immune response of the small-spotted catshark, Scyliorhinus canicula. Fish Shellfish Immunol 34(5):1158–1169

    Article  CAS  PubMed  Google Scholar 

  • Culbreath L, Smith SL, Obenauf SD (1991) Alternative complement pathway activity in nurse shark serum. Am Zool 31(5):A131–A131

    Google Scholar 

  • Das S et al (2016) Characterization of lamprey BAFF-like gene: evolutionary implications. J Immunol 197(7):2695–2703

    Article  CAS  PubMed  Google Scholar 

  • Day NK et al (1970) Complement and complement-like activity in lower vertebrates and invertebrates. J Exp Med 132(5):941–950

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Diaz M, Greenberg AS, Flajnik MF (1998) Somatic hypermutation of the new antigen receptor gene (NAR) in the nurse shark does not generate the repertoire: possible role in antigen-driven reactions in the absence of germinal centers. Proc Natl Acad Sci U S A 95(24):14343–14348

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Diaz M et al (1999) Mutational pattern of the nurse shark antigen receptor gene (NAR) is similar to that of mammalian Ig genes and to spontaneous mutations in evolution: the translesion synthesis model of somatic hypermutation. Int Immunol 11(5):825–833

    Article  CAS  PubMed  Google Scholar 

  • Diaz M et al (2002) Structural analysis, selection, and ontogeny of the shark new antigen receptor (IgNAR): identification of a new locus preferentially expressed in early development. Immunogenetics 54(7):501–512

    Article  CAS  PubMed  Google Scholar 

  • Dijkstra JM (2014) TH2 and Treg candidate genes in elephant shark. Nature 511(7508):E7–E9

    Article  CAS  PubMed  Google Scholar 

  • Dijkstra JM et al (2013) Comprehensive analysis of MHC class II genes in teleost fish genomes reveals dispensability of the peptide-loading DM system in a large part of vertebrates. BMC Evol Biol 13:260

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dodds AW et al (1998) Isolation and initial characterisation of complement components C3 and C4 of the nurse shark and the channel catfish. Dev Comp Immunol 22(2):207–216

    Article  CAS  PubMed  Google Scholar 

  • Dooley H, Flajnik MF (2005) Shark immunity bites back: affinity maturation and memory response in the nurse shark, Ginglymostoma cirratum. Eur J Immunol 35(3):936–945

    Article  CAS  PubMed  Google Scholar 

  • Dooley H et al (2006) First molecular and biochemical analysis of in vivo affinity maturation in an ectothermic vertebrate. Proc Natl Acad Sci U S A 103(6):1846–1851

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dulvy NK et al (2014) Extinction risk and conservation of the world's sharks and rays. elife 3:e00590

    Article  PubMed Central  PubMed  Google Scholar 

  • Eason DD et al (2004) Expression of individual immunoglobulin genes occurs in an unusual system consisting of multiple independent loci. Eur J Immunol 34(9):2551–2558

    Article  CAS  PubMed  Google Scholar 

  • Endo Y et al (1998) Two lineages of mannose-binding lectin-associated serine protease (MASP) in vertebrates. J Immunol 161(9):4924–4930

    CAS  PubMed  Google Scholar 

  • Endo Y et al (2003) Origin of mannose-binding lectin-associated serine protease (MASP)-1 and MASP-3 involved in the lectin complement pathway traced back to the invertebrate, amphioxus. J Immunol 170(9):4701–4707

    Article  CAS  PubMed  Google Scholar 

  • Fidler JE, Clem LW, Small PA Jr (1969) Immunoglobulin synthesis in neonatal nurse sharks (Ginglymostoma cirratum). Comp Biochem Physiol 31(2):365–371

    Article  CAS  PubMed  Google Scholar 

  • Flajnik MF (2014) Re-evaluation of the immunological Big Bang. Curr Biol 24(21):R1060–R1065

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Glenney GW, Wiens GD (2007) Early diversification of the TNF superfamily in teleosts: genomic characterization and expression analysis. J Immunol 178(12):7955–7973

    Article  CAS  PubMed  Google Scholar 

  • Goshima M et al (2016) The complement system of elasmobranches revealed by liver transcriptome analysis of a hammerhead shark, Sphyrna zygaena. Dev Comp Immunol 61:13–24

    Article  CAS  PubMed  Google Scholar 

  • Graham M, Shin DH, Smith SL (2009) Molecular and expression analysis of complement component C5 in the nurse shark (Ginglymostoma cirratum) and its predicted functional role. Fish Shellfish Immunol 27(1):40–49

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Granja AG et al (2017) Characterization of BAFF and APRIL subfamily receptors in rainbow trout (Oncorhynchus mykiss). Potential role of the BAFF / APRIL axis in the pathogenesis of proliferative kidney disease. PLoS One 12(3):e0174249

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Greenberg AS et al (1995) A new antigen receptor gene family that undergoes rearrangement and extensive somatic diversification in sharks. Nature 374(6518):168–173

    Article  CAS  PubMed  Google Scholar 

  • Grimes DJ et al (1985) Vibrios as autochthonous flora of neritic sharks. Syst Appl Microbiol 6(2):221–226

    Article  Google Scholar 

  • He X et al (2005) The zinc finger transcription factor Th-POK regulates CD4 versus CD8 T-cell lineage commitment. Nature 433(7028):826–833

    Article  CAS  PubMed  Google Scholar 

  • Hinds KR, Litman GW (1986) Major reorganization of immunoglobulin VH segmental elements during vertebrate evolution. Nature 320(6062):546–549

    Article  CAS  PubMed  Google Scholar 

  • Hsu E (2014) Considering V(D)J recombination in the shark. In: Smith SL, Sim RB, Flajnik M (eds) Immunobiology of the shark. CRC press, Boca Raton, pp 199–220

    Chapter  Google Scholar 

  • Hsu E et al (2006) The plasticity of immunoglobulin gene systems in evolution. Immunol Rev 210:8–26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Inoue JG et al (2010) Evolutionary origin and phylogeny of the modern holocephalans (Chondrichthyes: Chimaeriformes): a mitogenomic perspective. Mol Biol Evol 27(11):2576–2586

    Article  CAS  PubMed  Google Scholar 

  • Jensen JA et al (1981) The complement system of the nurse shark: hemolytic and comparative characteristics. Science 214(4520):566–569

    Article  CAS  PubMed  Google Scholar 

  • Kasahara M et al (1993) The evolutionary origin of the major histocompatibility complex: polymorphism of class II alpha chain genes in the cartilaginous fish. Eur J Immunol 23(9):2160–2165

    Article  CAS  PubMed  Google Scholar 

  • Kasamatsu J et al (2010) Phylogenetic and expression analysis of lamprey toll-like receptors. Dev Comp Immunol 34(8):855–865

    Article  CAS  PubMed  Google Scholar 

  • Kimura A, Nonaka M (2009) Molecular cloning of the terminal complement components C6 and C8beta of cartilaginous fish. Fish Shellfish Immunol 27(6):768–772

    Article  CAS  PubMed  Google Scholar 

  • Kimura A, Ikeo K, Nonaka M (2009) Evolutionary origin of the vertebrate blood complement and coagulation systems inferred from liver EST analysis of lamprey. Dev Comp Immunol 33(1):77–87

    Article  CAS  PubMed  Google Scholar 

  • Knight IT, Grimes DJ, Colwell RR (1988) Bacterial hydrolysis of urea in the tissues of Carcharhinid sharks. Can J Fish Aquat Sci 45(2):357–360

    Article  CAS  Google Scholar 

  • Kohu K et al (2005) Overexpression of the Runx3 transcription factor increases the proportion of mature thymocytes of the CD8 single-positive lineage. J Immunol 174(5):2627–2636

    Article  CAS  PubMed  Google Scholar 

  • Kokubu F et al (1988) Complete structure and organization of immunoglobulin heavy chain constant region genes in a phylogenetically primitive vertebrate. EMBO J 7(7):1979–1988

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Law SK, Dodds AW, Porter RR (1984) A comparison of the properties of two classes, C4A and C4B, of the human complement component C4. EMBO J 3(8):1819–1823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee SS et al (2000) Rearrangement of immunoglobulin genes in shark germ cells. J Exp Med 191(10):1637–1648

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee SS et al (2002) Hypermutation in shark immunoglobulin light chain genes results in contiguous substitutions. Immunity 16(4):571–582

    Article  CAS  PubMed  Google Scholar 

  • Lee V et al (2008) The evolution of multiple isotypic IgM heavy chain genes in the shark. J Immunol 180(11):7461–7470

    Article  CAS  PubMed  Google Scholar 

  • Li R et al (2012) Characterisation and expression analysis of B-cell activating factor (BAFF) in spiny dogfish (Squalus acanthias): cartilaginous fish BAFF has a unique extra exon that may impact receptor binding. Dev Comp Immunol 36(4):707–717

    Article  CAS  PubMed  Google Scholar 

  • Luer CA et al (1995) The elasmobranch thymus - anatomical, histological, and preliminary functional-characterization. J Exp Zool 273(4):342–354

    Article  Google Scholar 

  • Luer C, Walsh CJ, Bodine AB (2014) Sites of immune cell production in elasmobranch fishes: lymphomyeloid tissues and organs. In: Smith SL, Sim RB, Flajnik M (eds) Immunobiology of the shark. CRC Press, Boca Raton, pp 79–88

    Chapter  Google Scholar 

  • Ma Q et al (2013) Molecular cloning and expression analysis of major histocompatibility complex class IIB gene of the Whitespotted bambooshark (Chiloscyllium plagiosum). Fish Physiol Biochem 39(2):131–142

    Article  CAS  PubMed  Google Scholar 

  • Malecek K et al (2008) Immunoglobulin heavy chain exclusion in the shark. PLoS Biol 6(6):e157

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Marchalonis J, Edelman GM (1965) Phylogenetic origins of antibody structure. I. Multichain structure of immunoglobulins in the smooth dogfish (Mustelus canis). J Exp Med 122(3):601–618

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marchalonis J, Edelman GM (1966) Phylogenetic origins of antibody structure. II. Immunoglobulins in the primary immune response of the bullfrog, Rana catesbiana. J Exp Med 124(5):901–913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Matsumoto M et al (1996) Affinity maturation without germinal centres in lymphotoxin-alpha-deficient mice. Nature 382(6590):462–466

    Article  CAS  PubMed  Google Scholar 

  • Medzhitov R, Janeway CA Jr (1997) Innate immunity: the virtues of a nonclonal system of recognition. Cell 91(3):295–298

    Article  CAS  PubMed  Google Scholar 

  • Miracle AL et al (2001) Complex expression patterns of lymphocyte-specific genes during the development of cartilaginous fish implicate unique lymphoid tissues in generating an immune repertoire. Int Immunol 13(4):567–580

    Article  CAS  PubMed  Google Scholar 

  • Miyahara Y et al (2008) Generation and regulation of human CD4+ IL-17-producing T cells in ovarian cancer. Proc Natl Acad Sci U S A 105(40):15505–15510

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mulley JF et al (2014) Transcriptomic analysis of the lesser spotted catshark (Scyliorhinus canicula) pancreas, liver and brain reveals molecular level conservation of vertebrate pancreas function. BMC Genomics 15:1074

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Mylniczenko ND et al (2007) Blood culture results from healthy captive and free-ranging elasmobranchs. J Aquat Anim Health 19(3):159–167

    Article  PubMed  Google Scholar 

  • Neefjes J et al (2011) Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat Rev Immunol 11(12):823–836

    Article  CAS  PubMed  Google Scholar 

  • Neely HR, Flajnik MF (2016) Emergence and evolution of secondary lymphoid organs. Annu Rev Cell Dev Biol 32:693–711

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nielsen J et al (2016) Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus microcephalus). Science 353(6300):702–704

    Article  CAS  PubMed  Google Scholar 

  • Nish S, Medzhitov R (2011) Host defense pathways: role of redundancy and compensation in infectious disease phenotypes. Immunity 34(5):629–636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nonaka M, Smith SL (2000) Complement system of bony and cartilaginous fish. Fish Shellfish Immunol 10(3):215–228

    Article  CAS  PubMed  Google Scholar 

  • Nonaka MI et al (2017) Evolutionary analysis of two complement C4 genes: ancient duplication and conservation during jawed vertebrate evolution. Dev Comp Immunol 68:1–11

    Article  CAS  PubMed  Google Scholar 

  • Ohta Y, Flajnik M (2006) IgD, like IgM, is a primordial immunoglobulin class perpetuated in most jawed vertebrates. Proc Natl Acad Sci U S A 103(28):10723–10728

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohta Y et al (1999) Isolation of transporter associated with antigen processing genes, TAP1 and TAP2, from the horned shark Heterodontus francisci. Immunogenetics 49(11–12):981–986

    Article  CAS  PubMed  Google Scholar 

  • Ohta Y et al (2002) Proteasome, transporter associated with antigen processing, and class I genes in the nurse shark Ginglymostoma cirratum: evidence for a stable class I region and MHC haplotype lineages. J Immunol 168(2):771–781

    Article  CAS  PubMed  Google Scholar 

  • Ohta Y et al (2011) Primordial linkage of beta2-microglobulin to the MHC. J Immunol 186(6):3563–3571

    Article  CAS  PubMed  Google Scholar 

  • Okamura K et al (1997) The most primitive vertebrates with jaws possess highly polymorphic MHC class I genes comparable to those of humans. Immunity 7(6):777–790

    Article  CAS  PubMed  Google Scholar 

  • Ozaki K, Leonard WJ (2002) Cytokine and cytokine receptor pleiotropy and redundancy. J Biol Chem 277(33):29355–29358

    Article  CAS  PubMed  Google Scholar 

  • Pancer Z et al (2004) Somatic diversification of variable lymphocyte receptors in the agnathan sea lamprey. Nature 430(6996):174–180

    Article  CAS  PubMed  Google Scholar 

  • Pancer Z et al (2005) Variable lymphocyte receptors in hagfish. Proc Natl Acad Sci U S A 102(26):9224–9229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pettinello R, Dooley H (2014) The immunoglobulins of cold-blooded vertebrates. Biomol Ther 4(4):1045–1069

    Google Scholar 

  • Pettinello R et al (2017) Evolutionary history of the T cell receptor complex as revealed by small-spotted catshark (Scyliorhinus canicula). Dev Comp Immunol 74:125–135

    Article  CAS  PubMed  Google Scholar 

  • Rast JP et al (1995) Identification and characterization of T-cell antigen receptor-related genes in phylogenetically diverse vertebrate species. Immunogenetics 42(3):204–212

    Article  CAS  PubMed  Google Scholar 

  • Rast JP et al (1997) Alpha, beta, gamma, and delta T cell antigen receptor genes arose early in vertebrate phylogeny. Immunity 6(1):1–11

    Article  CAS  PubMed  Google Scholar 

  • Read TD et al (2017) Draft sequencing and assembly of the genome of the world's largest fish, the whale shark: Rhincodon typus smith 1828. BMC Genomics 18(1):532

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Redmond AK, Pettinello R, Dooley H (2017) Outgroup, alignment and modelling improvements indicate that two TNFSF13-like genes existed in the vertebrate ancestor. Immunogenetics 69(3):187–192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ren W et al (2011) The first BAFF gene cloned from the cartilaginous fish. Fish Shellfish Immunol 31(6):1088–1096

    Article  CAS  PubMed  Google Scholar 

  • Ricklin D et al (2010) Complement: a key system for immune surveillance and homeostasis. Nat Immunol 11(9):785–797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roach JC et al (2005) The evolution of vertebrate toll-like receptors. Proc Natl Acad Sci U S A 102(27):9577–9582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ross GD, Jensen JA (1973) The first component (C1n) of the complement system of the nurse shark (Ginglymostoma cirratum). I. Hemolytic characteristics of partially purified C1n. J Immunol 110(1):175–182

    CAS  PubMed  Google Scholar 

  • Roux KH et al (1998) Structural analysis of the nurse shark (new) antigen receptor (NAR): molecular convergence of NAR and unusual mammalian immunoglobulins. Proc Natl Acad Sci U S A 95(20):11804–11809

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ruediger GF, Davis DJ (1907) Phagocytosis and opsonins in the lower animals. J Infect Dis 4(3):3

    Article  Google Scholar 

  • Rumfelt LL (2014) Shark reproduction, immune system development and maturation: a review. In: Smith SL, Sim RB, Flajnik M (eds) Immunobiology of the shark. CRC press, Boca Raton, pp 51–78

    Chapter  Google Scholar 

  • Rumfelt LL et al (2001) A shark antibody heavy chain encoded by a nonsomatically rearranged VDJ is preferentially expressed in early development and is convergent with mammalian IgG. Proc Natl Acad Sci U S A 98(4):1775–1780

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rumfelt LL et al (2002) The development of primary and secondary lymphoid tissues in the nurse shark Ginglymostoma cirratum: B-cell zones precede dendritic cell immigration and T-cell zone formation during ontogeny of the spleen. Scand J Immunol 56(2):130–148

    Article  CAS  PubMed  Google Scholar 

  • Rumfelt LL et al (2004) Unprecedented multiplicity of Ig transmembrane and secretory mRNA forms in the cartilaginous fish. J Immunol 173(2):1129–1139

    Article  CAS  PubMed  Google Scholar 

  • Ryu JK et al (2017) Reconstruction of LPS transfer cascade reveals structural determinants within LBP, CD14, and TLR4-MD2 for efficient LPS recognition and transfer. Immunity 46(1):38–50

    Article  CAS  PubMed  Google Scholar 

  • Secombes CJ, Zou J (2017) Evolution of interferons and interferon receptors. Front Immunol 8:209

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Secombes CJ, Zou J, Bird S (2014) Cytokines of cartilaginous fish. In: Smith SL, Sim RB, Flajnik M (eds) Immunobiology of the shark. CRC press, Boca Raton, FL, pp 123–142

    Chapter  Google Scholar 

  • Shen T et al (2014) Molecular cloning, organization, expression and 3D structural analysis of the MHC class Ia gene in the whitespotted bamboo shark (Chiloscyllium plagiosum). Vet Immunol Immunopathol 157(1–2):111–118

    Article  CAS  PubMed  Google Scholar 

  • Shin DH et al (2007) Molecular cloning, structural analysis and expression of complement component Bf/C2 genes in the nurse shark, Ginglymostoma cirratum. Dev Comp Immunol 31(11):1168–1182

    Article  CAS  PubMed  Google Scholar 

  • Small PA Jr, Klapper DG, Clem LW (1970) Half-lives, body distribution and lack of interconversion of serum 19S and 7S IgM of sharks. J Immunol 105(1):29–37

    CAS  PubMed  Google Scholar 

  • Smith SL (1998) Shark complement: an assessment. Immunol Rev 166:67–78

    Article  CAS  PubMed  Google Scholar 

  • Smith SL, Nonaka M (2014) Shark complement: genes, protein and function. In: Smith SL, Sim RB, Flajnik M (eds) Immunobiology of the shark. CRC Press, Boca Raton, pp 143–172

    Chapter  Google Scholar 

  • Smith LE et al (2012) Characterization of the immunoglobulin repertoire of the spiny dogfish (Squalus acanthias). Dev Comp Immunol 36(4):665–679

    Article  CAS  PubMed  Google Scholar 

  • Sorenson L, Santini F, Alfaro ME (2014) The effect of habitat on modern shark diversification. J Evol Biol 27(8):1536–1548

    Article  CAS  PubMed  Google Scholar 

  • Stanfield RL et al (2004) Crystal structure of a shark single-domain antibody V region in complex with lysozyme. Science 305(5691):1770–1773

    Article  CAS  PubMed  Google Scholar 

  • Stanfield RL et al (2007) Maturation of shark single-domain (IgNAR) antibodies: evidence for induced-fit binding. J Mol Biol 367(2):358–372

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Kasahara M (1998) The MHC class I ligand-generating system: roles of immunoproteasomes and the interferon-gamma-inducible proteasome activator PA28. Immunol Rev 163:161–176

    Article  CAS  PubMed  Google Scholar 

  • Tao Z, Bullard SA, Arias CR (2014) Diversity of bacteria cultured from the blood of lesser electric rays caught in the northern Gulf of Mexico. J Aquat Anim Health 26(4):225–232

    Article  PubMed  Google Scholar 

  • Terado T et al (2001) Occurrence of structural specialization of the serine protease domain of complement factor B at the emergence of jawed vertebrates and adaptive immunity. Immunogenetics 53(3):250–254

    Article  CAS  PubMed  Google Scholar 

  • Terado T et al (2003) Molecular cloning of C4 gene and identification of the class III complement region in the shark MHC. J Immunol 171(5):2461–2466

    Article  CAS  PubMed  Google Scholar 

  • Tsukamoto K et al (2012) Long-lived dichotomous lineages of the proteasome subunit beta type 8 (PSMB8) gene surviving more than 500 million years as alleles or paralogs. Mol Biol Evol 29(10):3071–3079

    Article  CAS  PubMed  Google Scholar 

  • Venkatesh B et al (2014a) Elephant shark genome provides unique insights into gnathostome evolution. Nature 505(7482):174–179

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Venkatesh B et al (2014b) Venkatesh et al. reply. Nature 511(7508):E9–E10

    Article  CAS  PubMed  Google Scholar 

  • Wang Y et al (2001) Complementary effects of TNF and lymphotoxin on the formation of germinal center and follicular dendritic cells. J Immunol 166(1):330–337

    Article  CAS  PubMed  Google Scholar 

  • Wang Q et al (2012) Community annotation and bioinformatics workforce development in concert – Little Skate Genome Annotation Workshops and Jamborees. Database (Oxford) 2012:bar064

    Article  CAS  Google Scholar 

  • Wang Y et al (2013a) Molecular cloning of the alpha subunit of complement component C8 (CpC8alpha) of whitespotted bamboo shark (Chiloscyllium plagiosum). Fish Shellfish Immunol 35(6):1993–2000

    Article  CAS  PubMed  Google Scholar 

  • Wang Y et al (2013b) Molecular characterization and expression analysis of complement component C9 gene in the whitespotted bambooshark, Chiloscyllium plagiosum. Fish Shellfish Immunol 35(2):599–606

    Article  CAS  PubMed  Google Scholar 

  • Wyffels J et al (2014) SkateBase, an elasmobranch genome project and collection of molecular resources for chondrichthyan fishes. F1000Res 3:191

    Article  PubMed Central  PubMed  Google Scholar 

  • Xie X et al (2015) The regulatory T cell lineage factor Foxp3 regulates gene expression through several distinct mechanisms mostly independent of direct DNA binding. PLoS Genet 11(6):e1005251

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zapata A, Amemiya CT (2000) Phylogeny of lower vertebrates and their immunological structures. Curr Top Microbiol Immunol 248:67–107

    CAS  PubMed  Google Scholar 

  • Zhang C, Du Pasquier L, Hsu E (2013) Shark IgW C region diversification through RNA processing and isotype switching. J Immunol 191(6):3410–3418

    Article  CAS  PubMed  Google Scholar 

  • Zhu C et al (2011) The multiple shark Ig H chain genes rearrange and hypermutate autonomously. J Immunol 187(5):2492–2501

    Article  CAS  PubMed  Google Scholar 

  • Zhu C et al (2012) Origin of immunoglobulin isotype switching. Curr Biol 22(10):872–880

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zou J et al (2015) The CXC chemokine receptors of fish: insights into CXCR evolution in the vertebrates. Gen Comp Endocrinol 215:117–131

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Many thanks to my PhD students Rita Pettinello, Anthony Redmond, and Hanover Matz for their helpful comments during the drafting of this chapter. Also to Rita, Anthony, and Kirsty Macleod for allowing me to share their unpublished data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helen Dooley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dooley, H. (2018). Chondrichthyes: The Immune System of Cartilaginous Fishes. In: Cooper, E. (eds) Advances in Comparative Immunology. Springer, Cham. https://doi.org/10.1007/978-3-319-76768-0_18

Download citation

Publish with us

Policies and ethics