Skip to main content

Promising Biomolecules

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1059))

Abstract

The osteochondral defect (OD) comprises the articular cartilage and its subchondral bone. The treatment of these lesions remains as one of the most problematic clinical issues, since these defects include different tissues, requiring distinct healing approaches. Among the growing applications of regenerative medicine, clinical articular cartilage repair has been used for two decades, and it is an effective example of translational medicine; one of the most used cell-based repair strategies includes implantation of autologous cells in degradable scaffolds such as alginate, agarose, collagen, chitosan, chondroitin sulfate, cellulose, silk fibroin, hyaluronic acid, and gelatin, among others. Concerning the repair of osteochondral defects, tissue engineering and regenerative medicine started to design single- or bi-phased scaffold constructs, often containing hydroxyapatite-collagen composites, usually used as a bone substitute. Biomolecules such as natural and synthetic have been explored to recreate the cartilage-bone interface through multilayered biomimetic scaffolds. In this chapter, a succinct description about the most relevant natural and synthetic biomolecules used on cartilage and bone repair, describing the procedures to obtain these biomolecules, their chemical structure, common modifications to improve its characteristics, and also their application in the biomedical fields, is given.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mano J, Reis R (2007) Osteochondral defects: present situation and tissue engineering approaches. J Tissue Eng Regen Med 1(4):261–273

    Article  CAS  PubMed  Google Scholar 

  2. Mellor LF et al (2015) Extracellular calcium modulates chondrogenic and osteogenic differentiation of human adipose-derived stem cells: a novel approach for osteochondral tissue engineering using a single stem cell source. Tissue Eng A 21(17–18):2323–2333

    Article  CAS  Google Scholar 

  3. James HP et al (2014) Smart polymers for the controlled delivery of drugs–a concise overview. Acta Pharm Sin B 4(2):120–127

    Article  Google Scholar 

  4. Liechty WB et al (2010) Polymers for drug delivery systems. Ann Rev Chem Biomol Eng 1:149–173

    Article  CAS  Google Scholar 

  5. Singh J (2016) Natural polymers based drug delivery systems. World J Pharm Pharm Sci 5(4):805–816

    CAS  Google Scholar 

  6. Malafaya PB, Silva GA, Reis RL (2007) Natural–origin polymers as carriers and scaffolds for biomolecules and cell delivery in tissue engineering applications. Adv Drug Deliv Rev 59(4):207–233

    Article  CAS  PubMed  Google Scholar 

  7. Sokolsky-Papkov M et al (2007) Polymer carriers for drug delivery in tissue engineering. Adv Drug Deliv Rev 59(4):187–206

    Article  CAS  PubMed  Google Scholar 

  8. Rodriguez F et al (2014) Principles of polymer systems. CRC Press, Boca Raton

    Google Scholar 

  9. Martin I et al (2007) Osteochondral tissue engineering. J Biomech 40(4):750–765

    Article  PubMed  Google Scholar 

  10. Slotkin JR et al (2017) Biodegradable scaffolds promote tissue remodeling and functional improvement in non-human primates with acute spinal cord injury. Biomaterials 123:63–76

    Article  CAS  PubMed  Google Scholar 

  11. Neto BA, Carvalho PH, Correa JR (2015) Benzothiadiazole derivatives as fluorescence imaging probes: beyond classical scaffolds. Acc Chem Res 48(6):1560–1569

    Article  CAS  PubMed  Google Scholar 

  12. Francis R, Joy N, Sivadas A (2016) Relevance of natural degradable polymers in the biomedical field. In: Biomedical applications of polymeric materials and composites. Wiley-VCH Verlag GmbH & Co. KGaA, 303–360

    Chapter  Google Scholar 

  13. Temenoff JS, Mikos AG (2000) Review: tissue engineering for regeneration of articular cartilage. Biomaterials 21(5):431–440

    Article  CAS  PubMed  Google Scholar 

  14. Bonzani IC, George JH, Stevens MM (2006) Novel materials for bone and cartilage regeneration. Curr Opin Chem Biol 10(6):568–575

    Article  CAS  PubMed  Google Scholar 

  15. Doulabi AH, Mequanint K, Mohammadi H (2014) Blends and nanocomposite biomaterials for articular cartilage tissue engineering. Materials 7:5327–5355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vinatier C et al (2009) Cartilage tissue engineering: towards a biomaterial-assisted mesenchymal stem cell therapy. Curr Stem Cell Res Ther 4(4):318–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Johnstone B et al (2013) Tissue engineering for articular cartilage repair--the state of the art. Eur Cell Mater 25:248–267

    Article  CAS  PubMed  Google Scholar 

  18. Cao Z, Dou C, Dong S (2014) Scaffolding biomaterials for cartilage regeneration. J Nanomater 2014:1

    Article  CAS  Google Scholar 

  19. Lee EJ, Kasper FK, Mikos AG (2014) Biomaterials for tissue engineering. Ann Biomed Eng 42(2):323–337

    Article  PubMed  Google Scholar 

  20. Chajra H et al (2008) Collagen-based biomaterials and cartilage engineering. Application to osteochondral defects. Biomed Mater Eng 18(1 Suppl):S33–S45

    PubMed  CAS  Google Scholar 

  21. Koh L-D et al (2015) Structures, mechanical properties and applications of silk fibroin materials. Prog Polym Sci 46:86–110

    Article  CAS  Google Scholar 

  22. Kambe Y et al (2016) Silk fibroin sponges with cell growth-promoting activity induced by genetically fused basic fibroblast growth factor. J Biomed Mater Res A 104(1):82–93

    Article  CAS  PubMed  Google Scholar 

  23. Liu H et al (2015) Composite scaffolds of nano-hydroxyapatite and silk fibroin enhance mesenchymal stem cell-based bone regeneration via the interleukin 1 alpha autocrine/paracrine signaling loop. Biomaterials 49:103–112

    Article  CAS  PubMed  Google Scholar 

  24. Hashimoto T et al (2015) Changes in the properties and protein structure of silk fibroin molecules in autoclaved fabrics. Polym Degrad Stab 112:20–26

    Article  CAS  Google Scholar 

  25. Lai GJ et al (2014) Composite chitosan/silk fibroin nanofibers for modulation of osteogenic differentiation and proliferation of human mesenchymal stem cells. Carbohydr Polym 111:288–297

    Article  CAS  PubMed  Google Scholar 

  26. Kundu B et al (2013) Silk fibroin biomaterials for tissue regenerations. Adv Drug Deliv Rev 65(4):457–470

    Article  CAS  PubMed  Google Scholar 

  27. Lewis R (1996) Unraveling the weave of spider silkOne of nature's wondrous chemical structures is being dissected so that it can be used in human inventions. Bioscience 46(9):636–638

    Article  Google Scholar 

  28. Rockwood DN et al (2011) Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 6(10):1612–1631

    Article  CAS  PubMed  Google Scholar 

  29. Jin SH et al (2014) The effects of tetracycline-loaded silk fibroin membrane on proliferation and osteogenic potential of mesenchymal stem cells. J Surg Res 192(2):e1–e9

    Article  CAS  PubMed  Google Scholar 

  30. Foss C et al (2013) Silk fibroin/hyaluronic acid 3D matrices for cartilage tissue engineering. Biomacromolecules 14(1):38–47

    Article  CAS  PubMed  Google Scholar 

  31. Saha S et al (2013) Osteochondral tissue engineering in vivo A comparative study using layered silk fibroin scaffolds from mulberry and nonmulberry silkworms. PLoS One 8(11):e80004

    Article  PubMed  PubMed Central  Google Scholar 

  32. Miranda-Nieves D, Chaikof EL (2017) Collagen and elastin biomaterials for the fabrication of engineered living tissues. ACS Biomater Sci Eng 3(5):694–711

    Article  CAS  PubMed  Google Scholar 

  33. Ong KL, Lovald S, Black J (2015) Orthopaedic biomaterials in research and practice, 2nd edn. CRC Press, Boca Raton, p 476

    Google Scholar 

  34. Gelse K, Pöschl E, Aigner T (2003) Collagens—structure, function, and biosynthesis. Adv Drug Deliv Rev 55(12):1531–1546

    Article  CAS  PubMed  Google Scholar 

  35. Gaharwar AK et al (2013) Nanocomposite polymer: biomaterials for tissue repair of bone and cartilage: a material science perspective. In: Gaharwar AK et al (eds) Nanomaterials in tissue engineering: fabrication and applications. Woodhead Publishing, Cambridge, p 468

    Chapter  Google Scholar 

  36. Lee JC, Volpicelli EJ (2017) Bioinspired collagen scaffolds in cranial bone regeneration: from bedside to bench. Adv Healthc Mater 6(17)

    Article  CAS  Google Scholar 

  37. Chaudhari AA et al (2016) Future prospects for scaffolding methods and biomaterials in skin tissue engineering: a review. Int J Mol Sci 17(12)

    Article  CAS  PubMed Central  Google Scholar 

  38. Chattopadhyay S, Raines RT (2014) Review collagen-based biomaterials for wound healing. Biopolymers 101(8):821–833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Abedin MZ et al (2013) Isolation and characterization of pepsin-solubilized collagen from the integument of sea cucumber (Stichopus vastus). J Sci Food Agric 93(5):1083–1088

    Article  CAS  PubMed  Google Scholar 

  40. Potaros T et al (2009) Characteristics of collagen from Nile Tilapia (oreochromis niloticus) skin isolated by two different methods. Kasetsart J 43:584–593

    CAS  Google Scholar 

  41. Gorgieva S, Kokol V (2011) Collagen- vs. gelatine-based biomaterials and their biocompatibility: review and perspectives. In: Pignatello R (ed) Biomaterials applications for nanomedicine. INTECH Open Access Publisher, Rijeka.

    Google Scholar 

  42. Zhang L, Hu J, Athanasiou KA (2009) The role of tissue engineering in articular cartilage repair and regeneration. Crit Rev Biomed Eng 37(1–2):1–57

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sionkowska A et al (2014) The influence of UV-irradiation on thermal and mechanical properties of chitosan and silk fibroin mixtures. J Photochem Photobiol B 140:301–305

    Article  CAS  PubMed  Google Scholar 

  44. Bhardwaj N et al (2011) Potential of 3-D tissue constructs engineered from bovine chondrocytes/silk fibroin-chitosan for in vitro cartilage tissue engineering. Biomaterials 32(25):5773–5781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Je JY, Kim SK (2012) Chitosan as potential marine nutraceutical. Adv Food Nutr Res 65:121–135

    Article  PubMed  Google Scholar 

  46. Zhang K et al (2013) Repair of an articular cartilage defect using adipose-derived stem cells loaded on a polyelectrolyte complex scaffold based on poly(l-glutamic acid) and chitosan. Acta Biomater 9(7):7276–7288

    Article  CAS  PubMed  Google Scholar 

  47. Bano I et al (2017) Chitosan: a potential biopolymer for wound management. Int J Biol Macromol 102:380–383

    Article  CAS  PubMed  Google Scholar 

  48. Bhardwaj N, Kundu SC (2011) Silk fibroin protein and chitosan polyelectrolyte complex porous scaffolds for tissue engineering applications. Carbohydr Polym 85(2):325–333

    Article  CAS  Google Scholar 

  49. Dragan ES (2014) Design and applications of interpenetrating polymer network hydrogels. A review. Chem Eng J 243:572–590

    Article  CAS  Google Scholar 

  50. Draget KI, Smidsrød O, Skjåk-Bræk G (2005) Alginates from algae. In: Biopolymers online. Wiley Online Libray

    Google Scholar 

  51. Fertah M et al (2015) Extraction and characterization of sodium alginate from Moroccan Laminaria digitata brown seaweed. Arab J Chem 8(1):1–142

    Article  CAS  Google Scholar 

  52. Cardoso MJ, Costa RR, Mano JF (2016) Marine origin polysaccharides in drug delivery systems. Mar Drugs 14(2)

    Article  CAS  PubMed Central  Google Scholar 

  53. Nalamothu N, Potluri A, Muppalla MB (2014) Review on marine alginates and its applications. Indo Am J Pharm Res 4(10):4006–4015

    Google Scholar 

  54. Silva TH et al (2012) Materials of marine origin: a review on polymers and ceramics of biomedical interest. Int Mater Rev 2012

    Google Scholar 

  55. Boontheekul T, Kong HJ, Mooney DJ (2005) Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials 26(15):2455–2465

    Article  CAS  PubMed  Google Scholar 

  56. Li C et al (2009) Preparation and drug release of hydrophobically modified alginate. Chemistry 1:93–96

    Google Scholar 

  57. Alban S, Schauerte A, Franz G (2002) Anticoagulant sulfated polysaccharides: part I. Synthesis and structure-activity relationships of new pullulan sulfates. Carbohydr Polym 47(3):267–276

    Article  CAS  Google Scholar 

  58. Pluemsab W, Sakairi N, Furuike T (2005) Synthesis and inclusion property of alpha-cyclodextrin-linked alginate. Polymer 46(23):9778–9783

    Article  CAS  Google Scholar 

  59. Pelletier S et al (2001) Amphiphilic derivatives of sodium alginate and hyaluronate for cartilage repair: rheological properties. J Biomed Mater Res 54(1):102–108

    Article  CAS  PubMed  Google Scholar 

  60. Bu HT et al (2006) Interaction of unmodified and hydrophobically modified alginate with sodium dodecyl sulfate in dilute aqueous solution - Calorimetric, rheological, and turbidity studies. Colloids Surf A Physicochem Eng Asp 278(1–3):166–174

    Article  CAS  Google Scholar 

  61. Yang J-S, Xie Y-J, He W (2010) Research progress on chemical modification of alginate: a review. Carbohydr Polym 84(1):33–39

    Article  CAS  Google Scholar 

  62. Galant C et al (2006) Altering associations in aqueous solutions of a hydrophobically modified alginate in the presence of beta-cyclodextrin monomers. J Phys Chem B 110(1):190–195

    Article  CAS  PubMed  Google Scholar 

  63. Suhas et al (2016) Cellulose: a review as natural, modified and activated carbon adsorbent. Bioresour Technol 216:1066–1076

    Article  CAS  PubMed  Google Scholar 

  64. Muller FA et al (2006) Cellulose-based scaffold materials for cartilage tissue engineering. Biomaterials 27(21):3955–3963

    Article  CAS  PubMed  Google Scholar 

  65. Varoni E et al (2012) Agarose gel as biomaterial or scaffold for implantation surgery: characterization, histological and histomorphometric study on soft tissue response. Connect Tissue Res 53(6):548–554

    Article  CAS  PubMed  Google Scholar 

  66. Yodmuang S et al (2015) Silk microfiber-reinforced silk hydrogel composites for functional cartilage tissue repair. Acta Biomater 11:27–36

    Article  CAS  PubMed  Google Scholar 

  67. Khanarian NT et al (2012) A functional agarose-hydroxyapatite scaffold for osteochondral interface regeneration. Biomaterials 33(21):5247–5258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zignego DL et al (2014) The mechanical microenvironment of high concentration agarose for applying deformation to primary chondrocytes. J Biomech 47(9):2143–2148

    Article  PubMed  Google Scholar 

  69. Rackwitz L et al (2014) Functional cartilage repair capacity of de-differentiated, chondrocyte-and mesenchymal stem cell-laden hydrogels in vitro. Osteoarthritis Cartilage 22(8):1148–1157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Collins MN, Birkinshaw C (2013) Hyaluronic acid based scaffolds for tissue engineering--a review. Carbohydr Polym 92(2):1262–1279

    Article  CAS  PubMed  Google Scholar 

  71. Zhao F et al (2014) The application of polysaccharide biocomposites to repair cartilage defects. Int J Polym Sci 2014:9

    Article  CAS  Google Scholar 

  72. Murado MA et al (2012) Optimization of extraction and purification process of hyaluronic acid from fish eyeball. Food Bioprod Process 90(C3):491–498

    Article  CAS  Google Scholar 

  73. Liu L et al (2011) Microbial production of hyaluronic acid: current state, challenges, and perspectives. Microb Cell Fact 10:99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kang JY et al (2009) Novel porous matrix of hyaluronic acid for the three-dimensional culture of chondrocytes. Int J Pharm 369(1–2):114–120

    Article  CAS  PubMed  Google Scholar 

  75. Kim IL, Mauck RL, Burdick JA (2011) Hydrogel design for cartilage tissue engineering: a case study with hyaluronic acid. Biomaterials 32(34):8771–8782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Unterman SA et al (2012) Hyaluronic acid-binding scaffold for articular cartilage repair. Tissue Eng Part A 18(23–24):2497–2506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Park YB et al (2017) Single-stage cell-based cartilage repair in a rabbit model: cell tracking and in vivo chondrogenesis of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel composite. Osteoarthritis Cartilage 25(4):570–580

    Article  CAS  PubMed  Google Scholar 

  78. Prajapati VD et al (2013) An insight into the emerging exopolysaccharide gellan gum as a novel polymer. Carbohydr Polym 93(2):670–678

    Article  CAS  PubMed  Google Scholar 

  79. Osmalek T, Froelich A, Tasarek S (2014) Application of gellan gum in pharmacy and medicine. Int J Pharm 466(1–2):328–340

    Article  CAS  PubMed  Google Scholar 

  80. da Silva RMP et al (2008) Poly(N-Isopropylacrylamide) surface-grafted chitosan membranes as a new substrate for cell sheet engineering and manipulation. Biotechnol Bioeng 101(6):1321–1331

    Article  CAS  PubMed  Google Scholar 

  81. da Silva LP et al (2014) Engineering cell-adhesive gellan gum spongy-like hydrogels for regenerative medicine purposes. Acta Biomater 10(11):4787–4797

    Article  CAS  PubMed  Google Scholar 

  82. Kang D, Zhang F, Zhang H (2015) Fabrication of stable aqueous dispersions of graphene using gellan gum as a reducing and stabilizing agent and its nanohybrids. Mater Chem Phys 149-150:129–139

    Article  CAS  Google Scholar 

  83. Coutinho DF et al (2010) Modified Gellan Gum hydrogels with tunable physical and mechanical properties. Biomaterials 31(29):7494–7502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tang Y et al (2012) An improved complex gel of modified gellan gum and carboxymethyl chitosan for chondrocytes encapsulation. Carbohydr Polym 88(1):46–53

    Article  CAS  Google Scholar 

  85. Thalla PK et al (2014) Chondroitin sulfate coatings display low platelet but high endothelial cell adhesive properties favorable for vascular implants. Biomacromolecules 15(7):2512–2520

    Article  CAS  PubMed  Google Scholar 

  86. Shi YG et al (2014) Chondroitin sulfate: extraction, purification, microbial and chemical synthesis. J Chem Technol Biotechnol 89(10):1445–1465

    Article  CAS  Google Scholar 

  87. Jerosch J (2011) Effects of glucosamine and chondroitin sulfate on cartilage metabolism in OA: outlook on other nutrient partners especially Omega-3 fatty acids. Int J Rheumatol 2011:17

    Article  CAS  Google Scholar 

  88. Lai JY et al (2012) Nanoscale modification of porous gelatin scaffolds with chondroitin sulfate for corneal stromal tissue engineering. Int J Nanomedicine 7:1101–1114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Fardellone P et al (2013) Comparative efficacy and safety study of two chondroitin sulfate preparations from different origin (avian and bovine) in symptomatic osteoarthritis of the knee. Open Rheumatol J 7:1–12

    Article  PubMed  PubMed Central  Google Scholar 

  90. Vazquez JA et al (2013) Chondroitin sulfate, hyaluronic acid and chitin/chitosan production using marine waste sources: characteristics, applications and eco-friendly processes: a review. Mar Drugs 11(3):747–774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Charbonneau C et al (2011) Stimulation of cell growth and resistance to apoptosis in vascular smooth muscle cells on a chondroitin sulfate/epidermal growth factor coating. Biomaterials 32(6):1591–1600

    Article  CAS  PubMed  Google Scholar 

  92. Wei B et al (2015) Three-dimensional polycaprolactone-hydroxyapatite scaffolds combined with bone marrow cells for cartilage tissue engineering. J Biomater Appl 30(2):160–170

    Article  CAS  PubMed  Google Scholar 

  93. Place ES et al (2009) Synthetic polymer scaffolds for tissue engineering. Chem Soc Rev 38(4):1139–1151

    Article  CAS  PubMed  Google Scholar 

  94. Solchaga LA et al (2005) Repair of osteochondral defects with hyaluronan- and polyester-based scaffolds. Osteoarthritis Cartilage 13(4):297–309

    Article  PubMed  Google Scholar 

  95. Kang SW et al (2006) The use of poly(lactic-co-glycolic acid) microspheres as injectable cell carriers for cartilage regeneration in rabbit knees. J Biomater Sci Polym Ed 17(8):925–939

    Article  CAS  PubMed  Google Scholar 

  96. Schmaljohann D (2006) Thermo-and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58(15):1655–1670

    Article  CAS  PubMed  Google Scholar 

  97. Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog Polym Sci 35(10):1217–1256

    Article  CAS  Google Scholar 

  98. Hui JH et al (2013) Oligo[poly(ethylene glycol)fumarate] hydrogel enhances osteochondral repair in porcine femoral condyle defects. Clin Orthop Relat Res 471(4):1174–1185

    Article  PubMed  Google Scholar 

  99. Emami J et al (2015) Formulation and optimization of celecoxib-loaded PLGA nanoparticles by the Taguchi design and their in vitro cytotoxicity for lung cancer therapy. Pharm Dev Technol 20(7):791–800

    Article  CAS  PubMed  Google Scholar 

  100. Harris JM (2013) Poly (ethylene glycol) chemistry: biotechnical and biomedical applications. Springer Science & Business Media

    Google Scholar 

  101. D'Este M et al (2016) Evaluation of an injectable thermoresponsive hyaluronan hydrogel in a rabbit osteochondral defect model. J Biomed Mater Res A 104(6):1469–1478

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hajer Radhouani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oliveira, I., Carvalho, A.L., Radhouani, H., Gonçalves, C., Oliveira, J.M., Reis, R.L. (2018). Promising Biomolecules. In: Oliveira, J., Pina, S., Reis, R., San Roman, J. (eds) Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, vol 1059. Springer, Cham. https://doi.org/10.1007/978-3-319-76735-2_8

Download citation

Publish with us

Policies and ethics