Skip to main content

In Vitro Mimetic Models for the Bone-Cartilage Interface Regeneration

  • Chapter
  • First Online:
Osteochondral Tissue Engineering

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1059))

Abstract

In embryonic development, pure cartilage structures are in the basis of bone-cartilage interfaces. Despite this fact, the mature bone and cartilage structures can vary greatly in composition and function. Nevertheless, they collaborate in the osteochondral region to create a smooth transition zone that supports the movements and forces resulting from the daily activities. In this sense, all the hierarchical organization is involved in the maintenance and reestablishment of the equilibrium in case of damage. Therefore, this interface has attracted a great deal of interest in order to understand the mechanisms of regeneration or disease progression in osteoarthritis. With that purpose, in vitro tissue models (either static or dynamic) have been studied. Static in vitro tissue models include monocultures, co-cultures, 3D cultures, and ex vivo cultures, mostly cultivated in flat surfaces, while dynamic models involve the use of bioreactors and microfluidic systems. The latter have emerged as alternatives to study the cellular interactions in a more authentic manner over some disadvantages of the static models. The current alternatives of in vitro mimetic models for bone-cartilage interface regeneration are overviewed and discussed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hoemann CD, Lafantaisie-Favreau C-H, Lascau-Coman V et al (2012) The cartilage-bone interface. J Knee Surg 25:85–97. https://doi.org/10.1055/s-0032-1319782

    Article  PubMed  Google Scholar 

  2. Haines RW (1975) The histology of epiphyseal union in mammals. J Anat 120:1–25

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Hunziker EB, Kapfinger E, Geiss J (2007) The structural architecture of adult mammalian articular cartilage evolves by a synchronized process of tissue resorption and neoformation during postnatal development. Osteoarthr Cartil 15:403–413. https://doi.org/10.1016/j.joca.2006.09.010

    Article  PubMed  CAS  Google Scholar 

  4. Hayes AJ, MacPherson S, Morrison H et al (2001) The development of articular cartilage: evidence for an appositional growth mechanism. Anat Embryol (Berl) 203:469–479

    Article  CAS  Google Scholar 

  5. Khanarian NT, Boushell MK, Spalazzi JP et al (2014) FTIR-I compositional mapping of the cartilage-to-bone Interface as a function of tissue region and age. J Bone Miner Res 29:2643–2652. https://doi.org/10.1002/jbmr.2284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Yang L, Tsang KY, Tang HC et al (2014) Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation. Proc Natl Acad Sci U S A 111:12097–12102. https://doi.org/10.1073/pnas.1302703111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Atesok K, Doral MN, Karlsson J et al (2016) Multilayer scaffolds in orthopaedic tissue engineering. Knee Surgery, Sport Traumatol Arthrosc 24:2365–2373. https://doi.org/10.1007/s00167-014-3453-z

    Article  Google Scholar 

  8. Liu Y, Lian Q, He J et al (2011) Study on the microstructure of human articular cartilage/bone Interface. J Bionic Eng 8:251–262. https://doi.org/10.1016/S1672-6529(11)60037-1

    Article  Google Scholar 

  9. Goldring SR, Goldring MB (2016) Changes in the osteochondral unit during osteoarthritis: structure, function and cartilage–bone cross talk. Nat Rev Rheumatol 12:632–644. https://doi.org/10.1038/nrrheum.2016.148

    Article  PubMed  Google Scholar 

  10. Mithoefer K, McAdams TR, Scopp JM, Mandelbaum BR (2009) Emerging options for treatment of articular cartilage injury in the athlete. Clin Sports Med 28:25–40. https://doi.org/10.1016/j.csm.2008.09.001

    Article  PubMed  Google Scholar 

  11. Smith GD, Knutsen G, Richardson JB (2005) A clinical review of cartilage repair techniques. J Bone Jt Surg - Br 87–B:445–449. https://doi.org/10.1302/0301-620X.87B4.15971

    Article  Google Scholar 

  12. Iqbal Z, Kumaraswamy V, Srivastava P et al (2013) Role of autologous chondrocyte transplantation in articular cartilage defects: an experimental study. Indian J Orthop 47:129. https://doi.org/10.4103/0019-5413.108878

    Article  PubMed  PubMed Central  Google Scholar 

  13. Röhner E, Pfitzner T, Preininger B et al (2016) Temporary arthrodesis using fixator rods in two-stage revision of septic knee prothesis with severe bone and tissue defects. Knee Surgery, Sport Traumatol Arthrosc 24:84–88. https://doi.org/10.1007/s00167-014-3324-7

    Article  Google Scholar 

  14. Siclari A, Mascaro G, Gentili C et al (2014) Cartilage repair in the knee with subchondral drilling augmented with a platelet-rich plasma-immersed polymer-based implant. Knee Surgery, Sport Traumatol Arthrosc 22:1225–1234. https://doi.org/10.1007/s00167-013-2484-1

    Article  Google Scholar 

  15. Alexander PG, Gottardi R, Lin H et al (2014) Three-dimensional osteogenic and chondrogenic systems to model osteochondral physiology and degenerative joint diseases. Exp Biol Med 239:1080–1095. https://doi.org/10.1177/1535370214539232

    Article  CAS  Google Scholar 

  16. Worthen J, Waterman BR, Davidson PA, Lubowitz JH (2012) Limitations and sources of bias in clinical knee cartilage research. Arthrosc J Arthrosc Relat Surg 28:1315–1325. https://doi.org/10.1016/j.arthro.2012.02.022

    Article  Google Scholar 

  17. Johnson CI, Argyle DJ, Clements DN (2016) In vitro models for the study of osteoarthritis. Vet J 209:40–49. https://doi.org/10.1016/j.tvjl.2015.07.011

    Article  PubMed  Google Scholar 

  18. Gibson JS, Milner PI, White R et al (2007) Oxygen and reactive oxygen species in articular cartilage: modulators of ionic homeostasis. Pflügers Arch - Eur J Physiol 455:563–573. https://doi.org/10.1007/s00424-007-0310-7

    Article  CAS  Google Scholar 

  19. Grimshaw MJ, Mason RM (2001) Modulation of bovine articular chondrocyte gene expression in vitro by oxygen tension. Osteoarthr Cartil 9:357–364. https://doi.org/10.1053/joca.2000.0396

    Article  PubMed  CAS  Google Scholar 

  20. Murphy CL, Sambanis A (2001) Effect of oxygen tension and alginate encapsulation on restoration of the differentiated phenotype of passaged chondrocytes. Tissue Eng 7:791–803. https://doi.org/10.1089/107632701753337735

    Article  PubMed  CAS  Google Scholar 

  21. Yang PJ, Temenoff JS (2009) Engineering Orthopedic tissue interfaces. Tissue Eng Part B Rev 15:127–141. https://doi.org/10.1089/ten.teb.2008.0371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Madry H, Luyten FP, Facchini A (2012) Biological aspects of early osteoarthritis. Knee Surgery, Sport Traumatol Arthrosc 20:407–422. https://doi.org/10.1007/s00167-011-1705-8

    Article  Google Scholar 

  23. Butler LM, McGettrick HM, Nash GB (2016) Static and dynamic assays of cell adhesion relevant to the vasculature. Methods Mol Biol 1430:231–248

    Article  CAS  PubMed  Google Scholar 

  24. Elliott NT, Yuan F (2011) A review of three-dimensional in vitro tissue models for drug discovery and transport studies. J Pharm Sci 100:59–74. https://doi.org/10.1002/jps.22257

    Article  CAS  PubMed  Google Scholar 

  25. Duval K, Grover H, Han L-H et al (2017) Modeling physiological events in 2D vs. 3D cell culture. Physiology 32:266–277. https://doi.org/10.1152/physiol.00036.2016

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Sailon AM, Allori AC, Davidson EH et al (2009) A novel flow-perfusion bioreactor supports 3D dynamic cell culture. J Biomed Biotechnol 2009:873816. https://doi.org/10.1155/2009/873816

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Umansky R (1966) The effect of cell population density on the developmental fate of reaggregating mouse limb bud mesenchyme. Dev Biol 13:31–56. https://doi.org/10.1016/0012-1606(66)90048-0

    Article  PubMed  CAS  Google Scholar 

  28. Sanchez C, Deberg MA, Bellahcène A et al (2008) Phenotypic characterization of osteoblasts from the sclerotic zones of osteoarthritic subchondral bone. Arthritis Rheum 58:442–455. https://doi.org/10.1002/art.23159

    Article  PubMed  CAS  Google Scholar 

  29. Hunter GK, Hauschka PV, Poole AR et al (1996) Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins. Biochem J 317(Pt 1):59–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Greco KV, Iqbal AJ, Rattazzi L et al (2011) High density micromass cultures of a human chondrocyte cell line: a reliable assay system to reveal the modulatory functions of pharmacological agents. Biochem Pharmacol 82:1919–1929. https://doi.org/10.1016/j.bcp.2011.09.009

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Ahrens PB, Solursh M, Reiter RS (1977) Stage-related capacity for limb chondrogenesis in cell culture. Dev Biol 60:69–82

    Article  CAS  PubMed  Google Scholar 

  32. Jähn K, Richards RG, Archer CW, Stoddart MJ (2010) Pellet culture model for human primary osteoblasts. Eur Cell Mater 20:149–161. doi: vol020a13 [pii]

    Article  PubMed  Google Scholar 

  33. Kirkpatrick CJ, Fuchs S, Unger RE (2011) Co-culture systems for vascularization — learning from nature. Adv Drug Deliv Rev 63:291–299. https://doi.org/10.1016/j.addr.2011.01.009

    Article  PubMed  CAS  Google Scholar 

  34. Genova T, Munaron L, Carossa S, Mussano F (2016) Overcoming physical constraints in bone engineering: “the importance of being vascularized”. J Biomater Appl 30:940–951. https://doi.org/10.1177/0885328215616749

    Article  PubMed  CAS  Google Scholar 

  35. Pirraco RP, Marques AP, Reis RL (2010) Cell interactions in bone tissue engineering. J Cell Mol Med 14:93–102. https://doi.org/10.1111/j.1582-4934.2009.01005.x

    Article  PubMed  CAS  Google Scholar 

  36. Lee P, Tran K, Zhou G et al (2015) Guided differentiation of bone marrow stromal cells on co-cultured cartilage and bone scaffolds. Soft Matter 11:7648–7655. https://doi.org/10.1039/C5SM01909E

    Article  PubMed  CAS  Google Scholar 

  37. Mesallati T, Sheehy EJ, Vinardell T et al (2015) Tissue engineering scaled-up, anatomically shaped osteochondral constructs for joint resurfacing. Eur Cell Mater 30:163–185

    Article  CAS  PubMed  Google Scholar 

  38. Baldwin J, Antille M, Bonda U et al (2014) In vitro pre-vascularisation of tissue-engineered constructs a co-culture perspective. Vasc Cell 6:1–16. https://doi.org/10.1186/2045-824X-6-13

    Article  CAS  Google Scholar 

  39. Hubka KM, Dahlin RL, Meretoja VV et al (2014) Enhancing Chondrogenic phenotype for cartilage tissue engineering: monoculture and co-culture of articular chondrocytes and mesenchymal stem cells. Tissue Eng Part B 20:1–50. https://doi.org/10.1089/ten.TEB.2014.0034

    Article  Google Scholar 

  40. Meretoja VV, Dahlin RL, Wright S et al (2013) The effect of hypoxia on the chondrogenic differentiation of co-cultured articular chondrocytes and mesenchymal stem cells in scaffolds. Biomaterials 34:4266–4273. https://doi.org/10.1016/j.biomaterials.2013.02.064

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Wu L, Leijten JCH, Georgi N et al (2011) Trophic effects of mesenchymal stem cells increase chondrocyte proliferation and matrix formation. Tissue Eng Part A 17:1425–1436. https://doi.org/10.1089/ten.TEA.2010.0517

    Article  PubMed  CAS  Google Scholar 

  42. Ahmed N, Gan L, Nagy A et al (2009) Cartilage tissue formation using Redifferentiated passaged chondrocytes in vitro. Tissue Eng Part A 15:665–673. https://doi.org/10.1089/ten.tea.2008.0004

    Article  PubMed  CAS  Google Scholar 

  43. Qing C, Wei-ding C, Wei-min F (2011) Co-culture of chondrocytes and bone marrow mesenchymal stem cells in vitro enhances the expression of cartilaginous extracellular matrix components. Brazilian J Med Biol Res = Rev Bras Pesqui medicas e Biol 44:303–310

    Article  Google Scholar 

  44. Olivos-Meza A, Velasquillo Martínez C, Olivos Díaz B et al (2017) Co-culture of dedifferentiated and primary human chondrocytes obtained from cadaveric donor enhance the histological quality of repair tissue: an in-vivo animal study. Cell Tissue Bank 18:369–381. https://doi.org/10.1007/s10561-017-9635-4

    Article  PubMed  CAS  Google Scholar 

  45. Zhong J, Guo B, Xie J et al (2016) Crosstalk between adipose-derived stem cells and chondrocytes: when growth factors matter. Bone Res 4:15036. https://doi.org/10.1038/boneres.2015.36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. ter Huurne M, Schelbergen R, Blattes R et al (2012) Antiinflammatory and chondroprotective effects of intraarticular injection of adipose-derived stem cells in experimental osteoarthritis. Arthritis Rheum 64:3604–3613. https://doi.org/10.1002/art.34626

    Article  PubMed  CAS  Google Scholar 

  47. Schulze S, Wehrum D, Dieter P, Hempel U (2017) A supplement-free osteoclast-osteoblast co-culture for pre-clinical application. J Cell Physiol. https://doi.org/10.1002/jcp.26076

  48. Janardhanan S, Wang MO, Fisher JP (2012) Coculture strategies in bone tissue engineering: the impact of culture conditions on pluripotent stem cell populations. Tissue Eng Part B Rev 18:312–321. https://doi.org/10.1089/ten.TEB.2011.0681

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Panseri S, Russo A, Cunha C et al (2012) Osteochondral tissue engineering approaches for articular cartilage and subchondral bone regeneration. Knee Surgery, Sport Traumatol Arthrosc 20:1182–1191. https://doi.org/10.1007/s00167-011-1655-1

    Article  Google Scholar 

  50. Pesesse L, Sanchez C, Henrotin Y (2011) Osteochondral plate angiogenesis: a new treatment target in osteoarthritis. Jt Bone Spine 78:144–149. https://doi.org/10.1016/j.jbspin.2010.07.001

    Article  Google Scholar 

  51. Gawlitta D, Farrell E, Malda J et al (2010) Modulating endochondral ossification of multipotent stromal cells for bone regeneration. Tissue Eng Part B Rev 16:385–395. https://doi.org/10.1089/ten.TEB.2009.0712

    Article  PubMed  Google Scholar 

  52. Tokuhara Y, Wakitani S, Imai Y et al (2010) Repair of experimentally induced large osteochondral defects in rabbit knee with various concentrations of Escherichia coli-derived recombinant human bone morphogenetic protein-2. Int Orthop 34:761–767. https://doi.org/10.1007/s00264-009-0818-x

    Article  PubMed  Google Scholar 

  53. UNGER R, SARTORIS A, PETERS K et al (2007) Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Biomaterials 28:3965–3976. https://doi.org/10.1016/j.biomaterials.2007.05.032

    Article  PubMed  CAS  Google Scholar 

  54. Goerke SM, Plaha J, Hager S et al (2012) Human endothelial progenitor cells induce extracellular signal-regulated kinase-dependent differentiation of mesenchymal stem cells into smooth muscle cells upon Cocultivation. Tissue Eng Part A 18:120914061009005. https://doi.org/10.1089/ten.tea.2012.0147

    Article  CAS  Google Scholar 

  55. Davis GE, Bayless KJ, Mavila A (2002) Molecular basis of endothelial cell morphogenesis in three-dimensional extracellular matrices. Anat Rec 268:252–275. https://doi.org/10.1002/ar.10159

    Article  PubMed  CAS  Google Scholar 

  56. Davis GE, Stratman AN, Sacharidou A, Koh W (2011) Molecular basis for endothelial lumen formation and Tubulogenesis during Vasculogenesis and Angiogenic sprouting. Int Rev Cell Mol Biol 288:101–165. https://doi.org/10.1016/B978-0-12-386041-5.00003-0

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Evensen L, Micklem DR, Blois A et al (2009) Mural cell associated VEGF is required for Organotypic vessel formation. PLoS One 4:e5798. https://doi.org/10.1371/journal.pone.0005798

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kim K-I, Park S, Im G-I (2014) Osteogenic differentiation and angiogenesis with cocultured adipose-derived stromal cells and bone marrow stromal cells. Biomaterials 35:4792–4804. https://doi.org/10.1016/j.biomaterials.2014.02.048

    Article  PubMed  CAS  Google Scholar 

  59. Pepper MS, Montesano R, Vassalli J-D, Orci L (1991) Chondrocytes inhibit endothelial sprout formation in vitro: evidence for involvement of a transforming growth factor-beta. J Cell Physiol 146:170–179. https://doi.org/10.1002/jcp.1041460122

    Article  PubMed  CAS  Google Scholar 

  60. Yuan XL, Meng HY, Wang YC et al (2014) Bone-cartilage interface crosstalk in osteoarthritis: potential pathways and future therapeutic strategies. Osteoarthr Cartil 22:1077–1089. https://doi.org/10.1016/j.joca.2014.05.023

    Article  PubMed  CAS  Google Scholar 

  61. Pan J, Wang B, Li W et al (2012) Elevated cross-talk between subchondral bone and cartilage in osteoarthritic joints. Bone 51:212–217. https://doi.org/10.1016/j.bone.2011.11.030

    Article  PubMed  Google Scholar 

  62. Pan J, Zhou X, Li W et al (2009) In situ measurement of transport between subchondral bone and articular cartilage. J Orthop Res 27:1347–1352. https://doi.org/10.1002/jor.20883

    Article  PubMed  PubMed Central  Google Scholar 

  63. Jiang J, Leong NL, Mung JC et al (2008) Interaction between zonal populations of articular chondrocytes suppresses chondrocyte mineralization and this process is mediated by PTHrP. Osteoarthr Cartil 16:70–82. https://doi.org/10.1016/j.joca.2007.05.014

    Article  PubMed  CAS  Google Scholar 

  64. Çakmak S, Çakmak AS, Kaplan DL, Gümüşderelioğlu M (2016) A silk fibroin and peptide Amphiphile-based co-culture model for osteochondral tissue engineering. Macromol Biosci 16:1212–1226. https://doi.org/10.1002/mabi.201600013

    Article  PubMed  CAS  Google Scholar 

  65. Farrell E, Both SK, Odörfer KI et al (2011) In-vivo generation of bone via endochondral ossification by in-vitro chondrogenic priming of adult human and rat mesenchymal stem cells. BMC Musculoskelet Disord 12:31. https://doi.org/10.1186/1471-2474-12-31

    Article  PubMed  PubMed Central  Google Scholar 

  66. Janicki P, Kasten P, Kleinschmidt K et al (2010) Chondrogenic pre-induction of human mesenchymal stem cells on β-TCP: enhanced bone quality by endochondral heterotopic bone formation. Acta Biomater 6:3292–3301. https://doi.org/10.1016/j.actbio.2010.01.037

    Article  PubMed  CAS  Google Scholar 

  67. Scotti C, Piccinini E, Takizawa H et al (2013) Engineering of a functional bone organ through endochondral ossification. Proc Natl Acad Sci 110:3997–4002. https://doi.org/10.1073/pnas.1220108110

    Article  PubMed  PubMed Central  Google Scholar 

  68. Panseri S, Montesi M, Dozio SM et al (2016) Biomimetic scaffold with aligned microporosity designed for dentin regeneration. Front Bioeng Biotechnol 4:48. https://doi.org/10.3389/fbioe.2016.00048

    Article  PubMed  PubMed Central  Google Scholar 

  69. Font Tellado S, Bonani W, Balmayor ER et al (2017) Fabrication and characterization of biphasic silk fibroin scaffolds for tendon/ligament-to-bone tissue engineering. Tissue Eng Part A 23:859–872. https://doi.org/10.1089/ten.tea.2016.0460

    Article  PubMed  CAS  Google Scholar 

  70. O’Shea TM, Miao X (2008) Bilayered scaffolds for osteochondral tissue engineering. Tissue Eng Part B Rev 14:447–464. https://doi.org/10.1089/ten.teb.2008.0327

    Article  PubMed  CAS  Google Scholar 

  71. Oliveira JM, Rodrigues MT, Silva SS et al (2006) Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials 27:6123–6137. https://doi.org/10.1016/J.BIOMATERIALS.2006.07.034

    Article  PubMed  CAS  Google Scholar 

  72. Yan L-P, Silva-Correia J, Oliveira MB et al (2015) Bilayered silk/silk-nanoCaP scaffolds for osteochondral tissue engineering: in vitro and in vivo assessment of biological performance. Acta Biomater 12:227–241. https://doi.org/10.1016/j.actbio.2014.10.021

    Article  PubMed  CAS  Google Scholar 

  73. Kang H, Peng J, Lu S et al (2014) In vivo cartilage repair using adipose-derived stem cell-loaded decellularized cartilage ECM scaffolds. J Tissue Eng Regen Med 8:442–453. https://doi.org/10.1002/term.1538

    Article  PubMed  CAS  Google Scholar 

  74. Zheng X-F, Lu S-B, Zhang W-G et al (2011) Mesenchymal stem cells on a decellularized cartilage matrix for cartilage tissue engineering. Biotechnol Bioprocess Eng 16:593–602. https://doi.org/10.1007/s12257-010-0348-9

    Article  CAS  Google Scholar 

  75. Sutherland AJ, Beck EC, Dennis SC et al (2015) Decellularized cartilage may be a Chondroinductive material for osteochondral tissue engineering. PLoS One 10:e0121966. https://doi.org/10.1371/journal.pone.0121966

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Johnson CC, Johnson DJ, Garcia GH et al (2017) High short-term failure rate associated with Decellularized osteochondral allograft for treatment of knee cartilage lesions. Arthrosc J Arthrosc Relat Surg. https://doi.org/10.1016/j.arthro.2017.07.018

  77. Vindas Bolaños RA, Cokelaere SM, Estrada McDermott JM et al (2017) The use of a cartilage decellularized matrix scaffold for the repair of osteochondral defects: the importance of long-term studies in a large animal model. Osteoarthr Cartil 25:413–420. https://doi.org/10.1016/j.joca.2016.08.005

    Article  PubMed  Google Scholar 

  78. Do A-V, Khorsand B, Geary SM, Salem AK (2015) 3D printing of scaffolds for tissue regeneration applications. Adv Healthc Mater 4:1742–1762. https://doi.org/10.1002/adhm.201500168

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. JoVE Science Education Database. Developmental Biology. Explant Culture for Developmental Studies. JoVE, Cambridge, MA, (2018). https://www.jove.com/science-education/5329/explant-culture-fordevelopmental-studies. Accessed 22 Sep 2017

  80. Marino S, Staines KA, Brown G et al (2016) Models of ex vivo explant cultures: applications in bone research. Bonekey Rep. https://doi.org/10.1038/bonekey.2016.49

  81. Madsen SH, Goettrup AS, Thomsen G et al (2011) Characterization of an ex vivo femoral head model assessed by markers of bone and cartilage turnover. Cartilage 2:265–278. https://doi.org/10.1177/1947603510383855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. de Vries-van Melle ML, Mandl EW, Kops N et al (2012) An osteochondral culture model to study mechanisms involved in articular cartilage repair. Tissue Eng Part C Methods 18:45–53. https://doi.org/10.1089/ten.TEC.2011.0339

    Article  PubMed  Google Scholar 

  83. You J, Yellowley CE, Donahue HJ et al (2000) Substrate deformation levels associated with routine physical activity are less stimulatory to bone cells relative to loading-induced oscillatory fluid flow. J Biomech Eng 122:387–393

    Article  CAS  PubMed  Google Scholar 

  84. Yeatts AB, Fisher JP (2011) Bone tissue engineering bioreactors: dynamic culture and the influence of shear stress. Bone 48:171–181. https://doi.org/10.1016/j.bone.2010.09.138

    Article  PubMed  CAS  Google Scholar 

  85. Grayson WL, Bhumiratana S, Grace Chao PH et al (2010) Spatial regulation of human mesenchymal stem cell differentiation in engineered osteochondral constructs: effects of pre-differentiation, soluble factors and medium perfusion. Osteoarthr Cartil 18:714–723. https://doi.org/10.1016/j.joca.2010.01.008

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Malafaya PB, Reis RL (2009) Bilayered chitosan-based scaffolds for osteochondral tissue engineering: influence of hydroxyapatite on in vitro cytotoxicity and dynamic bioactivity studies in a specific double-chamber bioreactor. Acta Biomater 5:644–660. https://doi.org/10.1016/j.actbio.2008.09.017

    Article  PubMed  CAS  Google Scholar 

  87. R, Canadas (2015) Oliveira JM. Marques AP RR, Multi-chambers bioreactor, methods and uses

    Google Scholar 

  88. Canadas R, Oliveira JM, Marques AP RR (2014) Rotational dual chamber bioreactor: methods and uses thereof

    Google Scholar 

  89. Lozito TP, Alexander PG, Lin H et al (2013) Three-dimensional osteochondral microtissue to model pathogenesis of osteoarthritis. Stem Cell Res Ther 4:S6. https://doi.org/10.1186/scrt367

    Article  PubMed  PubMed Central  Google Scholar 

  90. Responte DJ, Lee JK, Hu JC, Athanasiou KA (2012) Biomechanics-driven chondrogenesis: from embryo to adult. FASEB J 26:3614–3624. https://doi.org/10.1096/fj.12-207241

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Oftadeh R, Perez-Viloria M, Villa-Camacho JC et al (2015) Biomechanics and mechanobiology of trabecular bone: a review. J Biomech Eng 137:108021. https://doi.org/10.1115/1.4029176

    Article  Google Scholar 

  92. Elder S, Fulzele K, McCulley W (2005) Cyclic hydrostatic compression stimulates chondroinduction of C3H/10T1/2 cells. Biomech Model Mechanobiol 3:141–146. https://doi.org/10.1007/s10237-004-0058-3

    Article  PubMed  CAS  Google Scholar 

  93. Gaspar DA, Gomide V, Monteiro FJ (2012) The role of perfusion bioreactors in bone tissue engineering. Biomatter 2:167–175. https://doi.org/10.4161/biom.22170

    Article  PubMed  PubMed Central  Google Scholar 

  94. Amini AR, Laurencin CT, Nukavarapu SP (2012) Bone tissue engineering: recent advances and challenges. Crit Rev Biomed Eng 40:363–408

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507:181–189. https://doi.org/10.1038/nature13118

    Article  PubMed  CAS  Google Scholar 

  96. Zhang J, Wei X, Zeng R et al (2017) Stem cell culture and differentiation in microfluidic devices toward organ-on-a-chip. Futur Sci OA 3:FSO187. https://doi.org/10.4155/fsoa-2016-0091

    Article  CAS  Google Scholar 

  97. Jun Y, Kang E, Chae S, Lee S-H (2014) Microfluidic spinning of micro- and nano-scale fibers for tissue engineering. Lab Chip 14:2145–2160. https://doi.org/10.1039/C3LC51414E

    Article  PubMed  CAS  Google Scholar 

  98. Hasan A, Paul A, Vrana NE et al (2014) Microfluidic techniques for development of 3D vascularized tissue. Biomaterials 35:7308–7325. https://doi.org/10.1016/j.biomaterials.2014.04.091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Aroonnual A, Janvilisri T, Ounjai P, Chankhamhaengdecha S (2017) Microfluidics: innovative approaches for rapid diagnosis of antibiotic-resistant bacteria. Essays Biochem 61:91–101. https://doi.org/10.1042/EBC20160059

    Article  PubMed  Google Scholar 

  100. Goldman SM, Barabino GA (2016) Spatial engineering of osteochondral tissue constructs through Microfluidically directed differentiation of mesenchymal stem cells. Biores Open Access 5:109–117. https://doi.org/10.1089/biores.2016.0005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Kim KM, Choi YJ, Hwang J-H et al (2014) Shear stress induced by an interstitial level of slow flow increases the osteogenic differentiation of mesenchymal stem cells through TAZ activation. PLoS One 9:e92427. https://doi.org/10.1371/journal.pone.0092427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Hasani-Sadrabadi MM, Pour Hajrezaei S, Hojjati Emami S et al (2015) Enhanced osteogenic differentiation of stem cells via microfluidics synthesized nanoparticles. Nanomedicine Nanotechnology, Biol Med 11:1809–1819. https://doi.org/10.1016/j.nano.2015.04.005

    Article  CAS  Google Scholar 

  103. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373. https://doi.org/10.1038/nature05058

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The research leading to this work has received funding from the Portuguese Foundation for Science and Technology for the M-ERA.NET/0001/2014 project and for the funds provided under the program Investigador FCT 2012 and 2015 (IF/00423/2012 and IF/01285/2015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Bicho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bicho, D., Pina, S., Oliveira, J.M., Reis, R.L. (2018). In Vitro Mimetic Models for the Bone-Cartilage Interface Regeneration. In: Oliveira, J., Pina, S., Reis, R., San Roman, J. (eds) Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, vol 1059. Springer, Cham. https://doi.org/10.1007/978-3-319-76735-2_17

Download citation

Publish with us

Policies and ethics