Skip to main content

Osteochondral Angiogenesis and Promoted Vascularization: New Therapeutic Target

  • Chapter
  • First Online:
Osteochondral Tissue Engineering

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1059))

Abstract

The control of the different angiogenic process is an important point in osteochondral regeneration. Angiogenesis is a prerequisite for osteogenesis in vivo; insufficient neovascularization of bone constructs after scaffold implantation resulted in hypoxia and cellular necrosis. Otherwise, angiogenesis must be avoided in chondrogenesis; vascularization of the cartilage contributes to structural damage and pain. Finding a balance between these processes is important to design a successful treatment for osteochondral regeneration. This chapter shows the most important advances in the control of angiogenic process for the treatment of osteochondral diseases focused on the administration of pro- or anti-angiogenic factor and the design of the scaffold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moutos FT, Freed LE, Guilak F (2007) A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. 6:162. https://doi.org/10.1038/nmat1822

  2. O'Keefe RJ, Mao J (2011) Bone tissue engineering and regeneration: from discovery to the clinic—an overview. Tissue Eng Part B Rev 17(6):389–392. https://doi.org/10.1089/ten.teb.2011.0475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Meachim G, Stockwell RA (1979). The matrix. In M.A.R. Freeman (Ed.), Adult Articular Cartilage (Second edition, pp.1–67) Pitman medical

    Google Scholar 

  4. Franzen A, Inerot S, Hejderup SO, Heinegard D (1981) Variations in the composition of bovine hip articular cartilage with distance from the articular surface. Biochem J 195(3):535–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kawcak CE, CW MI, Norrdin RW, Park RD, James SP (2001) The role of subchondral bone in joint disease: a review. Equine Vet J 33(2):120–126

    Article  CAS  PubMed  Google Scholar 

  6. Madry H, van Dijk CN, Mueller-Gerbl M (2010) The basic science of the subchondral bone. Knee Surg Sports Traumatol Arthrosc 18(4):419–433. https://doi.org/10.1007/s00167-010-1054-z

    Article  PubMed  Google Scholar 

  7. García-Fernández L, Halstenberg S, Unger RE, Aguilar MR, Kirkpatrick CJ, San Román J (2010) Anti-angiogenic activity of heparin-like polysulfonated polymeric drugs in 3D human cell culture. Biomaterials 31(31):7863–7872. https://doi.org/10.1016/j.biomaterials.2010.07.022

    Article  PubMed  CAS  Google Scholar 

  8. Keeney M, Pandit A (2009) The osteochondral junction and its repair via bi-phasic tissue engineering scaffolds. Tissue Eng Part B Rev 15(1):55–73. https://doi.org/10.1089/ten.teb.2008.0388

    Article  PubMed  CAS  Google Scholar 

  9. Franses RE, McWilliams DF, Mapp PI, Walsh DA (2010) Osteochondral angiogenesis and increased protease inhibitor expression in OA. Osteoarthr Cartil 18(4):563–571. https://doi.org/10.1016/j.joca.2009.11.015

    Article  CAS  Google Scholar 

  10. Nukavarapu SP, Dorcemus DL (2013) Osteochondral tissue engineering: current strategies and challenges. Biotechnol Adv 31(5):706–721. https://doi.org/10.1016/j.biotechadv.2012.11.004

    Article  CAS  PubMed  Google Scholar 

  11. Hayami T, Funaki H, Yaoeda K, Mitui K, Yamagiwa H, Tokunaga K, Hatano H, Kondo J, Hiraki Y, Yamamoto T, Duong LT, Endo N (2003) Expression of the cartilage derived anti-angiogenic factor chondromodulin-I decreases in the early stage of experimental osteoarthritis. J Rheumatol 30(10):2207–2217

    PubMed  CAS  Google Scholar 

  12. Deng B, Chen C, Gong X, Guo L, Chen H, Yin L, Yang L, Wang F (2017) Chondromodulin-I expression and correlation with angiogenesis in human osteoarthritic cartilage. Mol Med Rep 16(2):2142–2148. https://doi.org/10.3892/mmr.2017.6775

    Article  PubMed  CAS  Google Scholar 

  13. Chim SM, Tickner J, Chow ST, Kuek V, Guo B, Zhang G, Rosen V, Erber W, Xu J (2013) Angiogenic factors in bone local environment. Cytokine Growth Factor Rev 24(3):297–310. https://doi.org/10.1016/j.cytogfr.2013.03.008

    Article  CAS  PubMed  Google Scholar 

  14. Athanasiou KA, Darling EM, Hu JC (2009) Articular cartilage tissue engineering. Synth Lect Tissue Eng 1(1):1–182. https://doi.org/10.2200/S00212ED1V01Y200910TIS003

    Article  Google Scholar 

  15. Guo X, Liao J, Park H, Saraf A, Raphael RM, Tabata Y, Kasper FK, Mikos AG (2010) Effects of TGF-beta3 and preculture period of osteogenic cells on the chondrogenic differentiation of rabbit marrow mesenchymal stem cells encapsulated in a bilayered hydrogel composite. Acta Biomater 6(8):2920–2931. https://doi.org/10.1016/j.actbio.2010.02.046

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Xing S-C, Liu Y, Feng Y, Jiang C, Hu Y-Q, Sun W, Wang X-H, Wei Z-Y, Qi M, Liu J, Zhai L-J, Wang Z-Q (2015) Chondrogenic differentiation of ChM-I gene transfected rat bone marrow-derived mesenchymal stem cells on 3-dimensional poly (L-lactic acid) scaffold for cartilage engineering. Cell Biol Int 39(3):300–309. https://doi.org/10.1002/cbin.10393

    Article  PubMed  CAS  Google Scholar 

  17. Zhang X, Prasadam I, Fang W, Crawford R, Xiao Y (2016) Chondromodulin-1 ameliorates osteoarthritis progression by inhibiting HIF-2α activity. Osteoarthr Cartil 24(11):1970–1980. https://doi.org/10.1016/j.joca.2016.06.005

    Article  CAS  Google Scholar 

  18. Feng Y, Wu YP, Zhu XD, Zhang YH, Ma QJ (2005) Endostatin promotes the anabolic program of rabbit chondrocyte. Cell Res 15(3):201–206. https://doi.org/10.1038/sj.cr.7290287

    Article  PubMed  CAS  Google Scholar 

  19. O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88(2):277–285. https://doi.org/10.1016/S0092-8674(00)81848-6

    Article  CAS  PubMed  Google Scholar 

  20. Jeng L, Olsen BR, Spector M (2012) Engineering endostatin-expressing cartilaginous constructs using injectable biopolymer hydrogels. Acta Biomater 8(6):2203–2212. https://doi.org/10.1016/j.actbio.2012.02.015

    Article  CAS  PubMed  Google Scholar 

  21. Kubo S, Cooper GM, Matsumoto T, Phillippi JA, Corsi KA, Usas A, Li G, Fu FH, Huard J (2009) Blocking VEGF with sFlt1 improves the chondrogenic potential of mouse skeletal muscle-derived stem cells. Arthritis Rheum 60(1):155–165. https://doi.org/10.1002/art.24153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Marsano A, Medeiros da Cunha CM, Ghanaati S, Gueven S, Centola M, Tsaryk R, Barbeck M, Stuedle C, Barbero A, Helmrich U, Schaeren S, Kirkpatrick JC, Banfi A, Martin I (2016) Spontaneous in vivo Chondrogenesis of bone marrow-derived mesenchymal progenitor cells by blocking vascular endothelial growth factor signaling. Stem Cells Transl Med 5(12):1730–1738. https://doi.org/10.5966/sctm.2015-0321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Mulligan RC (1993) The basic science of gene therapy. Science (New York, NY) 260(5110):926–932

    Article  CAS  Google Scholar 

  24. Peniche H, Reyes-Ortega F, Aguilar MR, Rodríguez G, Abradelo C, García-Fernández L, Peniche C, Román JS (2013) Thermosensitive macroporous cryogels functionalized with bioactive chitosan/bemiparin nanoparticles. Macromol Biosci 13(11):1556–1567. https://doi.org/10.1002/mabi.201300184

    Article  PubMed  CAS  Google Scholar 

  25. Centola M, Abbruzzese F, Scotti C, Barbero A, Vadalà G, Denaro V, Martin I, Trombetta M, Rainer A, Marsano A (2013) Scaffold-based delivery of a clinically relevant anti-angiogenic drug promotes the formation of in vivo stable cartilage. Tissue Eng A 19(17–18):1960–1971. https://doi.org/10.1089/ten.tea.2012.0455

    Article  CAS  Google Scholar 

  26. Firsching-Hauck A, Nickel P, Yahya C, Wandt C, Kulik R, Simon N, Zink M, Nehls V, Allolio B (2000) Angiostatic effects of suramin analogs in vitro. Anti-Cancer Drugs 11(2):69–77

    Article  CAS  PubMed  Google Scholar 

  27. Hunziker EB, Driesang IMK (2003) Functional barrier principle for growth-factor-based articular cartilage repair. Osteoarthr Cartil 11(5):320–327. https://doi.org/10.1016/S1063-4584(03)00031-1

    Article  CAS  Google Scholar 

  28. Yousefi A-M, Hoque ME, Prasad RGSV, Uth N (2015) Current strategies in multiphasic scaffold design for osteochondral tissue engineering: a review. J Biomed Mater Res A 103(7):2460–2481. https://doi.org/10.1002/jbm.a.35356

    Article  PubMed  CAS  Google Scholar 

  29. Deckers MML, Karperien M, Van Der Bent C, Yamashita T, Papapoulos SE, Löwik CWGM (2000) Expression of vascular endothelial growth factors and their receptors during osteoblast differentiation. Endocrinology 141(5):1667–1674. https://doi.org/10.1210/en.141.5.1667

    Article  PubMed  CAS  Google Scholar 

  30. Mayr-wohlfart U, Waltenberger J, Hausser H, Kessler S, Günther KP, Dehio C, Puhl W, Brenner RE (2002) Vascular endothelial growth factor stimulates chemotactic migration of primary human osteoblasts. Bone 30(3):472–477. https://doi.org/10.1016/S8756-3282(01)00690-1

    Article  PubMed  CAS  Google Scholar 

  31. Midy V, Plouet J (1994) Vasculotropin/vascular endothelial growth factor induces differentiation in cultured osteoblasts. Biochem Biophys Res Commun 199(1):380–386. https://doi.org/10.1006/bbrc.1994.1240

    Article  PubMed  CAS  Google Scholar 

  32. Duan X, Murata Y, Liu Y, Nicolae C, Olsen BR, Berendsen AD (2015) Vegfa regulates perichondrial vascularity and osteoblast differentiation in bone development. Development 142(11):1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zavan B, Ferroni L, Gardin C, Sivolella S, Piattelli A, Mijiritsky E (2017) Release of VEGF from dental implant improves Osteogenetic process: preliminary in vitro tests. Materials 10(9). https://doi.org/10.3390/ma10091052

    Article  PubMed Central  Google Scholar 

  34. Kaigler D, Wang Z, Horger K, Mooney DJ, Krebsbach PH (2006) VEGF scaffolds enhance angiogenesis and bone regeneration in irradiated osseous defects. J Bone Miner Res 21(5):735–744. https://doi.org/10.1359/jbmr.060120

    Article  PubMed  CAS  Google Scholar 

  35. García JR, Clark AY, García AJ (2016) Integrin-specific hydrogels functionalized with VEGF for vascularization and bone regeneration of critical-size bone defects. J Biomed Mater Res A 104(4):889–900. https://doi.org/10.1002/jbm.a.35626

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Kasten P, Beverungen M, Lorenz H, Wieland J, Fehr M, Geiger F (2012) Comparison of platelet-rich plasma and VEGF-transfected mesenchymal stem cells on vascularization and bone formation in a critical-size bone defect. Cells Tissues Organs 196(6):523–533. https://doi.org/10.1159/000337490

    Article  PubMed  CAS  Google Scholar 

  37. Sato Y, Shimada T, Takaki R (1991) Autocrinological role of basic fibroblast growth factor on tube formation of vascular endothelial cells in vitro. Biochem Biophys Res Commun 180(2):1098–1102. https://doi.org/10.1016/S0006-291X(05)81179-9

    Article  CAS  PubMed  Google Scholar 

  38. Globus RK, Patterson-Buckendahl P, Gospodarowicz D (1988) Regulation of bovine bone cell proliferation by fibroblast growth factor and transforming growth factor beta. Endocrinology 123(1):98–105. https://doi.org/10.1210/endo-123-1-98

    Article  PubMed  CAS  Google Scholar 

  39. Perets A, Baruch Y, Weisbuch F, Shoshany G, Neufeld G, Cohen S (2003) Enhancing the vascularization of three-dimensional porous alginate scaffolds by incorporating controlled release basic fibroblast growth factor microspheres. J Biomed Mater Res A 65A(4):489–497. https://doi.org/10.1002/jbm.a.10542

    Article  CAS  Google Scholar 

  40. Ozawa CR, Banfi A, Glazer NL, Thurston G, Springer ML, Kraft PE, McDonald DM, Blau HM (2004) Microenvironmental VEGF concentration, not total dose, determines a threshold between normal and aberrant angiogenesis. J Clin Invest 113(4):516–527. https://doi.org/10.1172/jci18420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. von Degenfeld G, Banfi A, Springer ML, Wagner RA, Jacobi J, Ozawa CR, Merchant MJ, Cooke JP, Blau HM (2006) Microenvironmental VEGF distribution is critical for stable and functional vessel growth in ischemia. FASEB J: Off Publ Fed Am Soc Exp Biol 20(14):2657–2659. https://doi.org/10.1096/fj.06-6568fje

    Article  CAS  Google Scholar 

  42. Richardson TP, Peters MC, Ennett AB, Mooney DJ (2001) Polymeric system for dual growth factor delivery. Nat Biotech 19(11):1029–1034

    Article  CAS  Google Scholar 

  43. Chen RR, Silva EA, Yuen WW, Mooney DJ (2007) Spatio-temporal VEGF and PDGF delivery patterns blood vessel formation and maturation. Pharm Res 24(2):258–264. https://doi.org/10.1007/s11095-006-9173-4

    Article  PubMed  CAS  Google Scholar 

  44. Sun Q, Silva EA, Wang A, Fritton JC, Mooney DJ, Schaffler MB, Grossman PM, Rajagopalan S (2010) Sustained release of multiple growth factors from injectable polymeric system as a novel therapeutic approach towards angiogenesis. Pharm Res 27(2):264–271. https://doi.org/10.1007/s11095-009-0014-0

    Article  PubMed  CAS  Google Scholar 

  45. Elia R, Fuegy PW, VanDelden A, Firpo MA, Prestwich GD, Peattie RA (2010) Stimulation of in vivo angiogenesis by in situ crosslinked, dual growth factor-loaded, glycosaminoglycan hydrogels. Biomaterials 31(17):4630–4638. https://doi.org/10.1016/j.biomaterials.2010.02.043

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Freeman I, Cohen S (2009) The influence of the sequential delivery of angiogenic factors from affinity-binding alginate scaffolds on vascularization. Biomaterials 30(11):2122–2131. https://doi.org/10.1016/j.biomaterials.2008.12.057

    Article  PubMed  CAS  Google Scholar 

  47. Nillesen ST, Geutjes PJ, Wismans R, Schalkwijk J, Daamen WF, van Kuppevelt TH (2007) Increased angiogenesis and blood vessel maturation in acellular collagen-heparin scaffolds containing both FGF2 and VEGF. Biomaterials 28(6):1123–1131. https://doi.org/10.1016/j.biomaterials.2006.10.029

    Article  PubMed  CAS  Google Scholar 

  48. Zieris A, Prokoph S, Levental KR, Welzel PB, Grimmer M, Freudenberg U, Werner C (2010) FGF-2 and VEGF functionalization of starPEG-heparin hydrogels to modulate biomolecular and physical cues of angiogenesis. Biomaterials 31(31):7985–7994. https://doi.org/10.1016/j.biomaterials.2010.07.021

    Article  PubMed  CAS  Google Scholar 

  49. Li B, Wang H, Qiu G, Su X, Wu Z (2016) Synergistic effects of vascular endothelial growth factor on bone morphogenetic proteins induced bone formation in vivo: influencing factors and future research directions. Biomed Res Int 2016:2869572. https://doi.org/10.1155/2016/2869572

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Banerjee SS, Tarafder S, Davies NM, Bandyopadhyay A, Bose S (2010) Understanding the influence of MgO and SrO binary doping on the mechanical and biological properties of β-TCP ceramics. Acta Biomater 6(10):4167–4174. https://doi.org/10.1016/j.actbio.2010.05.012

    Article  CAS  PubMed  Google Scholar 

  51. Bandyopadhyay A, Bernard S, Xue W, Bose S (2006) Calcium phosphate-based resorbable ceramics: influence of MgO, ZnO, and SiO2 dopants. J Am Ceram Soc 89(9):2675–2688. https://doi.org/10.1111/j.1551-2916.2006.01207.x

    Article  CAS  Google Scholar 

  52. Rojo L, Radley-Searle S, Fernandez-Gutierrez M, Rodriguez-Lorenzo LM, Abradelo C, Deb S, San Roman J (2015) The synthesis and characterisation of strontium and calcium folates with potential osteogenic activity. J Mater Chem B 3(13):2708–2713. https://doi.org/10.1039/C4TB01969E

    Article  CAS  PubMed  Google Scholar 

  53. Jugdaohsingh R (2007) Silicon and bone health. J Nutr Health Aging 11(2):99–110

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Tarafder S, Dernell WS, Bandyopadhyay A, Bose S (2015) SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model. J Biomed Mater Res B Appl Biomater 103(3):679–690. https://doi.org/10.1002/jbm.b.33239

    Article  PubMed  CAS  Google Scholar 

  55. Wu F, Su J, Wei J, Guo H, Liu C (2008) Injectable bioactive calcium-magnesium phosphate cement for bone regeneration. Biomed Mater (Bristol, England) 3(4):044105. https://doi.org/10.1088/1748-6041/3/4/044105

    Article  CAS  Google Scholar 

  56. Fielding G, Bose S (2013) SiO2 and ZnO dopants in three-dimensionally printed tricalcium phosphate bone tissue engineering scaffolds enhance osteogenesis and angiogenesis in vivo. Acta Biomater 9(11):9137–9148. https://doi.org/10.1016/j.actbio.2013.07.009

    Article  CAS  PubMed  Google Scholar 

  57. Bose S, Tarafder S, Bandyopadhyay A (2017) Effect of chemistry on osteogenesis and angiogenesis towards bone tissue engineering using 3D printed scaffolds. Ann Biomed Eng 45(1):261–272. https://doi.org/10.1007/s10439-016-1646-y

    Article  PubMed  Google Scholar 

  58. Dashnyam K, El-Fiqi A, Buitrago JO, Perez RA, Knowles JC, Kim H-W (2017) A mini review focused on the proangiogenic role of silicate ions released from silicon-containing biomaterials. J Tissue Eng 8:2041731417707339. https://doi.org/10.1177/2041731417707339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Zhai W, Lu H, Wu C, Chen L, Lin X, Naoki K, Chen G, Chang J (2013) Stimulatory effects of the ionic products from Ca–Mg–Si bioceramics on both osteogenesis and angiogenesis in vitro. Acta Biomater 9(8):8004–8014. https://doi.org/10.1016/j.actbio.2013.04.024

    Article  CAS  PubMed  Google Scholar 

  60. Birgani ZT, Gharraee N, Malhotra A, van Blitterswijk CA, Habibovic P (2016) Combinatorial incorporation of fluoride and cobalt ions into calcium phosphates to stimulate osteogenesis and angiogenesis. Biomed Mater (Bristol, England) 11 (1):015020. doi:https://doi.org/10.1088/1748-6041/11/1/015020

    Article  PubMed  Google Scholar 

  61. Zhou J, Zhao L (2016) Multifunction Sr, Co and F co-doped microporous coating on titanium of antibacterial, angiogenic and osteogenic activities. Sci Rep 6:29069. https://doi.org/10.1038/srep29069

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Perez RA, Kim JH, Buitrago JO, Wall IB, Kim HW (2015) Novel therapeutic core-shell hydrogel scaffolds with sequential delivery of cobalt and bone morphogenetic protein-2 for synergistic bone regeneration. Acta Biomater 23:295–308. https://doi.org/10.1016/j.actbio.2015.06.002

    Article  PubMed  CAS  Google Scholar 

  63. Raeisdasteh Hokmabad V, Davaran S, Ramazani A, Salehi R (2017) Design and fabrication of porous biodegradable scaffolds: a strategy for tissue engineering. J Biomater Sci Polym Ed 28(16):1797–1825. https://doi.org/10.1080/09205063.2017.1354674

    Article  PubMed  CAS  Google Scholar 

  64. Lopa S, Madry H (2014) Bioinspired scaffolds for osteochondral regeneration. Tissue Eng Part A 20(15–16):2052–2076. https://doi.org/10.1089/ten.tea.2013.0356

    Article  PubMed  Google Scholar 

  65. Sartori M, Pagani S, Ferrari A, Costa V, Carina V, Figallo E, Maltarello MC, Martini L, Fini M, Giavaresi G (2017) A new bi-layered scaffold for osteochondral tissue regeneration: in vitro and in vivo preclinical investigations. Mater Sci Eng C 70(Part 1):101–111. https://doi.org/10.1016/j.msec.2016.08.027

    Article  CAS  Google Scholar 

  66. Hunziker EB, Driesang IM, Saager C (2001) Structural barrier principle for growth factor-based articular cartilage repair. Clin Orthop Relat Res 391 Suppl:S182–S189

    Article  Google Scholar 

  67. Levingstone TJ, Matsiko A, Dickson GR, O’Brien FJ, Gleeson JP (2014) A biomimetic multi-layered collagen-based scaffold for osteochondral repair. Acta Biomater 10(5):1996–2004. https://doi.org/10.1016/j.actbio.2014.01.005

    Article  CAS  PubMed  Google Scholar 

  68. Levingstone TJ, Thompson E, Matsiko A, Schepens A, Gleeson JP, O’Brien FJ (2016) Multi-layered collagen-based scaffolds for osteochondral defect repair in rabbits. Acta Biomater 32(Supplement C):149–160. https://doi.org/10.1016/j.actbio.2015.12.034

    Article  CAS  PubMed  Google Scholar 

  69. Frenkel SR, Bradica G, Brekke JH, Goldman SM, Ieska K, Issack P, Bong MR, Tian H, Gokhale J, Coutts RD, Kronengold RT (2005) Regeneration of articular cartilage – evaluation of osteochondral defect repair in the rabbit using multiphasic implants. Osteoarthr Cartil 13(9):798–807. https://doi.org/10.1016/j.joca.2005.04.018

    Article  CAS  Google Scholar 

  70. Levingstone TJ, Ramesh A, Brady RT, Brama PAJ, Kearney C, Gleeson JP, O'Brien FJ (2016) Cell-free multi-layered collagen-based scaffolds demonstrate layer specific regeneration of functional osteochondral tissue in caprine joints. Biomaterials 87(Supplement C):69–81. https://doi.org/10.1016/j.biomaterials.2016.02.006

    Article  CAS  PubMed  Google Scholar 

  71. Kon E, Delcogliano M, Filardo G, Fini M, Giavaresi G, Francioli S, Martin I, Pressato D, Arcangeli E, Quarto R, Sandri M, Marcacci M (2010) Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial. J Orthop Res 28(1):116–124. https://doi.org/10.1002/jor.20958

    Article  PubMed  Google Scholar 

  72. Cao L, Mooney DJ (2007) Spatiotemporal control over growth factor signaling for therapeutic neovascularization. Adv Drug Deliv Rev 59(13):1340–1350. https://doi.org/10.1016/j.addr.2007.08.012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Mohan N, Dormer NH, Caldwell KL, Key VH, Berkland CJ, Detamore MS (2011) Continuous gradients of material composition and growth factors for effective regeneration of the osteochondral interface. Tissue Eng Part A 17(21–22):2845–2855. https://doi.org/10.1089/ten.tea.2011.0135

    Article  PubMed  CAS  Google Scholar 

  74. Mohan N, Gupta V, Sridharan BP, Mellott AJ, Easley JT, Palmer RH, Galbraith RA, Key VH, Berkland CJ, Detamore MS (2015) Microsphere-based gradient implants for osteochondral regeneration: a long-term study in sheep. Regen Med 10(6):709–728. https://doi.org/10.2217/rme.15.38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Samorezov JE, Alsberg E (2015) Spatial regulation of controlled bioactive factor delivery for bone tissue engineering. Adv Drug Deliv Rev 84:45–67. https://doi.org/10.1016/j.addr.2014.11.018

    Article  CAS  PubMed  Google Scholar 

  76. Wylie RG, Shoichet MS (2011) Three-dimensional spatial patterning of proteins in hydrogels. Biomacromolecules 12(10):3789–3796. https://doi.org/10.1021/bm201037j

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis García-Fernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

García-Fernández, L. (2018). Osteochondral Angiogenesis and Promoted Vascularization: New Therapeutic Target. In: Oliveira, J., Pina, S., Reis, R., San Roman, J. (eds) Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, vol 1059. Springer, Cham. https://doi.org/10.1007/978-3-319-76735-2_14

Download citation

Publish with us

Policies and ethics