Skip to main content

Combination of Polymeric Supports and Drug Delivery Systems for Osteochondral Regeneration

  • Chapter
  • First Online:
Osteochondral Tissue Engineering

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1059))

Abstract

Musculoskeletal conditions have been defined by European National Health systems as one of the key themes which should be featured during the present decade as a consequence of the significant healthcare and social support costs. Among others, articular cartilage degeneration due to traumatic and degenerative lesion injury or other pathologies commonly results in the development of musculoskeletal disorders such as osteoarthritis and arthritis rheumatoid, eventually leading to progressive articular cartilage and joint destruction especially at osteochondral interphase, that account for more disability among the elderly than any other diseases constituting a global social challenge that needs a multidisciplinary response from the scientific community. Current treatments for damaged osteoarthritic joint cartilage include the use of disease-modifying drugs and ultimately joint arthroplasty as unavoidable surgical intervention due to the limited ability of articular cartilage to self-regenerate. However, potential future regenerative therapies based on tissue engineering strategies are likely to become more important to facilitate the recruitment of repairing cells and improve musculoskeletal metabolism. In addition, emerging bioprinting technologies in combination with implemented manufacturing techniques such electrospinning or cryogelation processes have permitted the development of new tissue substitutes with precise control of sizes and shapes to recreate the complex physiological, biomechanical and hierarchical microstructure of osteochondral interphases. Thus, this chapter will provide an upgrade on the state of the art focusing the most relevant developments on polymer scaffolds and drug delivery systems for osteochondral regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Smith E, Hoy D, Cross M, Merriman TR, Vos T, Buchbinder R, Woolf A, March L (2014) The global burden of gout: estimates from the Global Burden of Disease 2010 study. Ann Rheum Dis 73(8):1470–1476. https://doi.org/10.1136/annrheumdis-2013-204647

    Article  PubMed  Google Scholar 

  2. Storheim K, Zwart J-A (2014) Musculoskeletal disorders and the Global Burden of Disease study. Ann Rheum Dis 73(6):949–950. https://doi.org/10.1136/annrheumdis-2014-205327

    Article  PubMed  Google Scholar 

  3. Vieira S, Vial S, Maia F, Carvalho M, Reis R, Granja P, Oliveira J (2015) Gellan gum-coated gold nanorods: an intracellular nanosystem for bone tissue engineering. RSC Adv 5:77996–78005

    Article  CAS  Google Scholar 

  4. Buchbinder R, Maher C, Harris IA (2015) Setting the research agenda for improving health care in musculoskeletal disorders. Nat Rev Rheumatol 11(10):597–605. https://doi.org/10.1038/nrrheum.2015.81

    Article  PubMed  Google Scholar 

  5. Hasani-Sadrabadi MM, Pour Hajrezaei S, Hojjati Emami S, Bahlakeh G, Daneshmandi L, Dashtimoghadam E, Seyedjafari E, Jacob KI, Tayebi L (2015) Enhanced osteogenic differentiation of stem cells via microfluidics synthesized nanoparticles. Nanomedicine 11(7):1809–1819. https://doi.org/10.1016/j.nano.2015.04.005

    Article  CAS  PubMed  Google Scholar 

  6. Ringe J, Burmester GR, Sittinger M (2012) Regenerative medicine in rheumatic disease—progress in tissue engineering. Nat Rev Rheumatol 8(8):493–498

    Article  CAS  PubMed  Google Scholar 

  7. Ye K, Felimban R, Moulton S, Wallace G, Di Bella C, Traianedes K, Choong PFM, Myers D, Choong P (2013) Bioengineering of articular cartilage: past, present and future. Regen Med 8(3):333–349

    Article  CAS  PubMed  Google Scholar 

  8. Ringe J, Sittinger M (2014) Regenerative medicine: selecting the right biological scaffold for tissue engineering. Nat Rev Rheumatol 10(7):388–389. https://doi.org/10.1038/nrrheum.2014.79

    Article  PubMed  CAS  Google Scholar 

  9. Gothard D, Smith EL, Kanczler JM, Black CR, Wells JA, Roberts CA, White LJ, Qutachi O, Peto H, Rashidi H, Rojo L, Stevens MM, El Haj AJ, Rose F, Shakesheff KM, Oreffo ROC (2015) In vivo assessment of bone regeneration in alginate/bone ECM hydrogels with incorporated skeletal stem cells and single growth factors. PLoS One 10(12):e0145080. https://doi.org/10.1371/journal.pone.0145080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Fabbri M, Soccio M, Costa M, Lotti N, Gazzano M, Siracusa V, Gamberini R, Rimini B, Munari A, García-Fernández L, Vázquez-Lasa B, San Román J (2016) New fully bio-based PLLA triblock copoly(ester urethane)s as potential candidates for soft tissue engineering. Polym Degrad Stab 132(Supplement C):169–180. https://doi.org/10.1016/j.polymdegradstab.2016.02.024

    Article  CAS  Google Scholar 

  11. Rojo L, Radley-Searle S, Fernandez-Gutierrez M, Rodriguez-Lorenzo LM, Abradelo C, Deb S, Roman JS (2015) The synthesis and characterisation of strontium and calcium folates with potential osteogenic activity. J Mater Chem B 3(13):2708–2713. https://doi.org/10.1039/c4tb01969e

    Article  CAS  Google Scholar 

  12. Del Campo MM, Alvarado-Estrada K, Rojo L, Sampedro JG, Rosales-Ibáñez R, Román JS (2015) Effect and application of 3D-Scaffolds in restoration of bone defects. Dent Mater 31(Supplement 1):e65. https://doi.org/10.1016/j.dental.2015.08.142

    Article  Google Scholar 

  13. Suarez P, Rojo L, Gonzalez-Gomez A, San Roman J (2013) Self-assembling gradient copolymers of vinylimidazol and (acrylic)ibuprofen with anti-inflammatory and zinc chelating properties. Macromol Biosci 13(9):1174–1184. https://doi.org/10.1002/mabi.201300141

    Article  PubMed  CAS  Google Scholar 

  14. Velasco D, Réthoré G, Newland B, Parra J, Elvira C, Pandit A, Rojo L, San Román J (2012) Low polydispersity (N-ethyl pyrrolidine methacrylamide-co-1-vinylimidazole) linear oligomers for gene therapy applications. Eur J Pharm Biopharm 82(3):465–474. https://doi.org/10.1016/j.ejpb.2012.08.002

    Article  CAS  PubMed  Google Scholar 

  15. Rojo L, Fernandez-Gutierrez M, Deb S, Stevens MM, San Roman J (2015) Designing dapsone polymer conjugates for controlled drug delivery. Acta Biomater 27:32–41. https://doi.org/10.1016/j.actbio.2015.08.047

    Article  PubMed  CAS  Google Scholar 

  16. Ndlovu M, Bedson J, Jones PW, Jordan KP (2014) Pain medication management of musculoskeletal conditions at first presentation in primary care: analysis of routinely collected medical record data. BMC Musculoskelet Disord 15:418. https://doi.org/10.1186/1471-2474-15-418

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Chang D, Lamothe M, Stevens R, Sigal L (1996) Dapsone in rheumatoid arthritis. Semin Arthritis Rheum 25(6):390–403

    Article  CAS  PubMed  Google Scholar 

  18. Sakata R, Iwakura T, Reddi AH (2015) Regeneration of articular cartilage surface: morphogens, cells, and extracellular matrix scaffolds. Tissue Eng Part B Rev 21(5):461–473. https://doi.org/10.1089/ten.TEB.2014.0661

    Article  PubMed  CAS  Google Scholar 

  19. Kim BS, Park IK, Hoshiba T, Jiang HL, Choi YJ, Akaike T, Cho CS (2011) Design of artificial extracellular matrices for tissue engineering. Prog Polym Sci 36(2):238–268. https://doi.org/10.1016/j.progpolymsci.2010.10.001

    Article  CAS  Google Scholar 

  20. Ulery BD, Nair LS, Laurencin CT (2011) Biomedical applications of biodegradable polymers. J Polym Sci B Polym Phys 49(12):832–864. https://doi.org/10.1002/polb.22259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Basad E, Wissing FR, Fehrenbach P, Rickert M, Steinmeyer J, Ishaque B (2015) Matrix-induced autologous chondrocyte implantation (MACI) in the knee: clinical outcomes and challenges. Knee Surg Sports Traumatol Arthrosc 23(12):3729–3735. https://doi.org/10.1007/s00167-014-3295-8

    Article  PubMed  Google Scholar 

  22. Muzzarelli RAA, Greco F, Busilacchi A, Sollazzo V, Gigante A (2012) Chitosan, hyaluronan and chondroitin sulfate in tissue engineering for cartilage regeneration: a review. Carbohydr Polym 89(3):723–739. https://doi.org/10.1016/j.carbpol.2012.04.057

    Article  CAS  PubMed  Google Scholar 

  23. Mora-Boza A, Puertas-Bartolomé M, Vázquez-Lasa B, San Román J, Pérez-Caballer A, Olmeda-Lozano M (2017) Contribution of bioactive hyaluronic acid and gelatin to regenerative medicine. Methodologies of gels preparation and advanced applications. Eur Polym J 95(Supplement C):11–26. https://doi.org/10.1016/j.eurpolymj.2017.07.039

    Article  CAS  Google Scholar 

  24. Man Z, Hu X, Liu Z, Huang H, Meng Q, Zhang X, Dai L, Zhang J, Fu X, Duan X, Zhou C, Ao Y (2016) Transplantation of allogenic chondrocytes with chitosan hydrogel-demineralized bone matrix hybrid scaffold to repair rabbit cartilage injury. Biomaterials 108(Supplement C):157–167. https://doi.org/10.1016/j.biomaterials.2016.09.002

    Article  CAS  PubMed  Google Scholar 

  25. Park H, Lee HJ, An H, Lee KY (2017) Alginate hydrogels modified with low molecular weight hyaluronate for cartilage regeneration. Carbohydr Polym 162(Supplement C):100–107. https://doi.org/10.1016/j.carbpol.2017.01.045

    Article  CAS  PubMed  Google Scholar 

  26. Place ES, Rojo L, Gentleman E, Sardinha JP, Stevens MM (2011) Strontium- and zinc-alginate hydrogels for bone tissue engineering. Tissue Eng Part A 17(21–22):2713–2722. https://doi.org/10.1089/ten.tea.2011.0059

    Article  PubMed  CAS  Google Scholar 

  27. Sartori M, Pagani S, Ferrari A, Costa V, Carina V, Figallo E, Maltarello MC, Martini L, Fini M, Giavaresi G (2017) A new bi-layered scaffold for osteochondral tissue regeneration: in vitro and in vivo preclinical investigations. Mater Sci Eng C 70(Part 1):101–111. https://doi.org/10.1016/j.msec.2016.08.027

    Article  CAS  Google Scholar 

  28. Peniche H, Reyes-Ortega F, Aguilar MR, Rodriguez G, Abradelo C, Garcia-Fernandez L, Peniche C, San Roman J (2013) Thermosensitive macroporous cryogels functionalized with bioactive chitosan/bemiparin nanoparticles. Macromol Biosci 13(11):1556–1567. https://doi.org/10.1002/mabi.201300184

    Article  PubMed  CAS  Google Scholar 

  29. Chang N-J, Lin C-C, Shie M-Y, Yeh M-L, Li C-F, Liang P-I, Lee K-W, Shen P-H, Chu C-J (2015) Positive effects of cell-free porous PLGA implants and early loading exercise on hyaline cartilage regeneration in rabbits. Acta Biomater 28(Supplement C):128–137. https://doi.org/10.1016/j.actbio.2015.09.026

    Article  CAS  PubMed  Google Scholar 

  30. Rojo L, Vazquez B, San Roman J (2014) Synthetic polymers for tissue engineering scaffolds: biological design, materials, and fabrication. In: Migliaresi C, Motta A (eds) Scaffolds for tissue engineering: biological design, materials and fabrication. Pan Stanford Publishing, Singapore, pp 263–300

    Chapter  Google Scholar 

  31. Wang J, Zhang F, Tsang WP, Wan C, Wu C (2017) Fabrication of injectable high strength hydrogel based on 4-arm star PEG for cartilage tissue engineering. Biomaterials 120(Supplement C):11–21. https://doi.org/10.1016/j.biomaterials.2016.12.015

    Article  CAS  PubMed  Google Scholar 

  32. Radhakrishnan J, Subramanian A, Sethuraman S (2017) Injectable glycosaminoglycan–protein nano-complex in semi-interpenetrating networks: a biphasic hydrogel for hyaline cartilage regeneration. Carbohydr Polym 175(Supplement C):63–74. https://doi.org/10.1016/j.carbpol.2017.07.063

    Article  CAS  PubMed  Google Scholar 

  33. Moeinzadeh S, Pajoum Shariati SR, Jabbari E (2016) Comparative effect of physicomechanical and biomolecular cues on zone-specific chondrogenic differentiation of mesenchymal stem cells. Biomaterials 92:57–70. https://doi.org/10.1016/j.biomaterials.2016.03.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jiang T, Carbone EJ, Lo KWH, Laurencin CT (2015) Electrospinning of polymer nanofibers for tissue regeneration. Prog Polym Sci 46(Supplement C):1–24. https://doi.org/10.1016/j.progpolymsci.2014.12.001

    Article  CAS  Google Scholar 

  35. Hixon KR, Lu T, Sell SA (2017) A comprehensive review of cryogels and their roles in tissue engineering applications. Acta Biomater 62(Supplement C):29–41. https://doi.org/10.1016/j.actbio.2017.08.033

    Article  CAS  PubMed  Google Scholar 

  36. Bracaglia LG, Smith BT, Watson E, Arumugasaamy N, Mikos AG, Fisher JP (2017) 3D printing for the design and fabrication of polymer-based gradient scaffolds. Acta Biomater 56(Supplement C):3–13. https://doi.org/10.1016/j.actbio.2017.03.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lopez-Ruiz E, Jimenez G, Garcia MA, Antich C, Boulaiz H, Marchal JA, Peran M (2016) Polymers, scaffolds and bioactive molecules with therapeutic properties in osteochondral pathologies: what’s new? Expert Opin Ther Pat 26(8):877–890. https://doi.org/10.1080/13543776.2016.1203903

    Article  PubMed  CAS  Google Scholar 

  38. Smith BD, Grande DA (2015) The current state of scaffolds for musculoskeletal regenerative applications. Nat Rev Rheumatol 11(4):213–222. https://doi.org/10.1038/nrrheum.2015.27

    Article  PubMed  CAS  Google Scholar 

  39. Moreira Teixeira LS, Patterson J, Luyten FP (2014) Skeletal tissue regeneration: where can hydrogels play a role? Int Orthop 38(9):1861–1876. https://doi.org/10.1007/s00264-014-2402-2

    Article  PubMed  Google Scholar 

  40. Yang J, Zhang YS, Yue K, Khademhosseini A (2017) Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater 57(Supplement C):1–25. https://doi.org/10.1016/j.actbio.2017.01.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lam J, Lu S, Kasper FK, Mikos AG (2015) Strategies for controlled delivery of biologics for cartilage repair. Adv Drug Deliv Rev 84(Supplement C):123–134. https://doi.org/10.1016/j.addr.2014.06.006

    Article  CAS  PubMed  Google Scholar 

  42. Rojo L, Deb S (2015) Polymer therapeutics in relation to dentistry. Biomaterials for oral and craniomaxillofacial applications. Front Oral Biol 17:13–21. https://doi.org/10.1159/000381688

    Article  PubMed  Google Scholar 

  43. Gugjoo MB, Amarpal, Abdelbaset-Ismail A, Aithal HP, Kinjavdekar P, Pawde AM, Kumar GS, Sharma GT (2017) Mesenchymal stem cells with IGF-1 and TGF- β1 in laminin gel for osteochondral defects in rabbits. Biomed Pharmacother 93(Supplement C):1165–1174. https://doi.org/10.1016/j.biopha.2017.07.032

    Article  CAS  PubMed  Google Scholar 

  44. Luo Z, Jiang L, Xu Y, Li H, Xu W, Wu S, Wang Y, Tang Z, Lv Y, Yang L (2015) Mechano growth factor (MGF) and transforming growth factor (TGF)-β3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model. Biomaterials 52(Supplement C):463–475. https://doi.org/10.1016/j.biomaterials.2015.01.001

    Article  CAS  PubMed  Google Scholar 

  45. Lu S, Lam J, Trachtenberg JE, Lee EJ, Seyednejad H, van den JJJP B, Tabata Y, Wong ME, Jansen JA, Mikos AG, Kasper FK (2014) Dual growth factor delivery from bilayered, biodegradable hydrogel composites for spatially-guided osteochondral tissue repair. Biomaterials 35(31):8829–8839. https://doi.org/10.1016/j.biomaterials.2014.07.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kim DK, Kim JI, Sim BR, Khang G (2017) Bioengineered porous composite curcumin/silk scaffolds for cartilage regeneration. Mater Sci Eng C 78(Supplement C):571–578. https://doi.org/10.1016/j.msec.2017.02.067

    Article  CAS  Google Scholar 

  47. Zhou F, Zhang X, Cai D, Li J, Mu Q, Zhang W, Zhu S, Jiang Y, Shen W, Zhang S, Ouyang HW (2017) Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair. Acta Biomater 63:64–75. https://doi.org/10.1016/j.actbio.2017.09.005

    Article  CAS  PubMed  Google Scholar 

  48. Chen P, Tao J, Zhu S, Cai Y, Mao Q, Yu D, Dai J, Ouyang H (2015) Radially oriented collagen scaffold with SDF-1 promotes osteochondral repair by facilitating cell homing. Biomaterials 39(Supplement C):114–123. https://doi.org/10.1016/j.biomaterials.2014.10.049

    Article  CAS  PubMed  Google Scholar 

  49. Frohbergh ME, Guevara JM, Grelsamer RP, Barbe MF, He X, Simonaro CM, Schuchman EH (2016) Acid ceramidase treatment enhances the outcome of autologous chondrocyte implantation in a rat osteochondral defect model. Osteoarthr Cartil 24(4):752–762. https://doi.org/10.1016/j.joca.2015.10.016

    Article  CAS  PubMed  Google Scholar 

  50. Hung K-C, Tseng C-S, Dai L-G, Hsu S-h (2016) Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering. Biomaterials 83(Supplement C):156–168. https://doi.org/10.1016/j.biomaterials.2016.01.019

    Article  CAS  PubMed  Google Scholar 

  51. Wang C, Hou W, Guo X, Li J, Hu T, Qiu M, Liu S, Mo X, Liu X (2017) Two-phase electrospinning to incorporate growth factors loaded chitosan nanoparticles into electrospun fibrous scaffolds for bioactivity retention and cartilage regeneration. Mater Sci Eng C 79(Supplement C):507–515. https://doi.org/10.1016/j.msec.2017.05.075

    Article  CAS  Google Scholar 

  52. Fereshteh Z, Fathi M, Bagri A, Boccaccini AR (2016) Preparation and characterization of aligned porous PCL/zein scaffolds as drug delivery systems via improved unidirectional freeze-drying method. Mater Sci Eng C 68(Supplement C):613–622. https://doi.org/10.1016/j.msec.2016.06.009

    Article  CAS  Google Scholar 

  53. del Mercato LL, Passione LG, Izzo D, Rinaldi R, Sannino A, Gervaso F (2016) Design and characterization of microcapsules-integrated collagen matrixes as multifunctional three-dimensional scaffolds for soft tissue engineering. J Mech Behav Biomed Mater 62(Supplement C):209–221. https://doi.org/10.1016/j.jmbbm.2016.05.009

    Article  CAS  PubMed  Google Scholar 

  54. Lee Y-H, Wu H-C, Yeh C-W, Kuan C-H, Liao H-T, Hsu H-C, Tsai J-C, Sun J-S, Wang T-W (2017) Enzyme-crosslinked gene-activated matrix for the induction of mesenchymal stem cells in osteochondral tissue regeneration. Acta Biomater 63:210–226. https://doi.org/10.1016/j.actbio.2017.09.008

    Article  CAS  PubMed  Google Scholar 

  55. Wang W, Sun L, Zhang P, Song J, Liu W (2014) An anti-inflammatory cell-free collagen/resveratrol scaffold for repairing osteochondral defects in rabbits. Acta Biomater 10(12):4983–4995. https://doi.org/10.1016/j.actbio.2014.08.022

    Article  CAS  PubMed  Google Scholar 

  56. Needham CJ, Shah SR, Dahlin RL, Kinard LA, Lam J, Watson BM, Lu S, Kasper FK, Mikos AG (2014) Osteochondral tissue regeneration through polymeric delivery of DNA encoding for the SOX trio and RUNX2. Acta Biomater 10(10):4103–4112. https://doi.org/10.1016/j.actbio.2014.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Karimi T, Moeinzadeh S, Jabbari E (2015) 3-Growth factors for musculoskeletal tissue engineering. In: Nukavarapu SP, Freeman JW, Laurencin CT (eds) Regenerative engineering of musculoskeletal tissues and interfaces. Woodhead Publishing, Amsterdam, pp 43–76. https://doi.org/10.1016/B978-1-78242-301-0.00003-3

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Rojo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rojo, L. (2018). Combination of Polymeric Supports and Drug Delivery Systems for Osteochondral Regeneration. In: Oliveira, J., Pina, S., Reis, R., San Roman, J. (eds) Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, vol 1059. Springer, Cham. https://doi.org/10.1007/978-3-319-76735-2_13

Download citation

Publish with us

Policies and ethics