Skip to main content

Stem Cells for Osteochondral Regeneration

  • Chapter
  • First Online:
Book cover Osteochondral Tissue Engineering

Abstract

Stem cell research plays a central role in the future of medicine, which is mainly dependent on the advances on regenerative medicine (RM), specifically in the disciplines of tissue engineering (TE) and cellular therapeutics. All RM strategies depend upon the harnessing, stimulation, or guidance of endogenous developmental or repair processes in which cells have an important role. Among the most clinically challenging disorders, cartilage degeneration, which also affects subchondral bone becoming an osteochondral (OC) defect, is one of the most demanding. Although primary cells have been clinically applied, stem cells are currently seen as the promising tool of RM-related research because of its availability, in vitro proliferation ability, pluri- or multipotency, and immunosuppressive features. Being the OC unit, a transition from the bone to cartilage, mesenchymal stem cells (MSCs) are the main focus for OC regeneration. Promising alternatives, which can also be obtained from the patient or at banks and have great differentiation potential toward a wide range of specific cell types, have been reported. Still, ethical concerns and tumorigenic risk are currently under discussion and assessment. In this book chapter, we revise the existing stem cell-based approaches for engineering bone and cartilage, focusing on cell therapy and TE. Furthermore, 3D OC composites based on cell co-cultures are described. Finally, future directions and challenges still to be faced are critically discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim YS, Park EH, Kim YC, Koh YG (2013) Clinical outcomes of mesenchymal stem cell injection with arthroscopic treatment in older patients with osteochondral lesions of the talus. Am J Sports Med 41(5):1090–1099

    Article  PubMed  Google Scholar 

  2. Barry F, Murphy M (2013) Mesenchymal stem cells in joint disease and repair. Nat Rev Rheumatol 9(10):584–594

    Article  PubMed  CAS  Google Scholar 

  3. Gore M, Tai K-S, Sadosky A, Leslie D, Stacey BR (2011) Clinical comorbidities, treatment patterns, and direct medical costs of patients with osteoarthritis in usual care: a retrospective claims database analysis. J Med Econ 14(4):497–507

    Article  PubMed  Google Scholar 

  4. Michaud CM, McKenna MT, Begg S, Tomijima N, Majmudar M, Bulzacchelli MT et al (2006) The burden of disease and injury in the United States 1996. Popul Health Metr 4:11

    Article  PubMed  PubMed Central  Google Scholar 

  5. McKenna MT, Michaud CM, Murray CJL, Marks JS (2005) Assessing the burden of disease in the United States using disability-adjusted life years. Am J Prev Med 28(5):415–423

    Article  PubMed  Google Scholar 

  6. Ayral X, Pickering EH, Woodworth TG, Mackillop N, Dougados M (2005) Synovitis: a potential predictive factor of structural progression of medial tibiofemoral knee osteoarthritis – results of a 1 year longitudinal arthroscopic study in 422 patients. Osteoarthr Cartil 13(5):361–367

    Article  CAS  Google Scholar 

  7. Cascão R, Vidal B, Lopes IP, Paisana E, Rino J, Moita LF et al (2015) Decrease of CD68 synovial macrophages in celastrol treated arthritic rats. Ng LFP, editor. PLoS One 10(12):e0142448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Roelofs AJ, Zupan J, Riemen AHK, Kania K, Ansboro S, White N et al (2017) Joint morphogenetic cells in the adult mammalian synovium. Nat Commun 8:15040

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Hangody L, Kish G, Módis L, Szerb I, Gáspár L, Diószegi Z et al (2001) Mosaicplasty for the treatment of osteochondritis dissecans of the talus: two to seven year results in 36 patients. Foot Ankle Int 22(7):552–558

    Article  PubMed  CAS  Google Scholar 

  10. Kono M, Takao M, Naito K, Uchio Y, Ochi M (2006) Retrograde drilling for osteochondral lesions of the talar dome. Am J Sports Med 34(9):1450–1456

    Article  PubMed  Google Scholar 

  11. Baltzer AWA, Arnold JP (2005) Bone-cartilage transplantation from the ipsilateral knee for chondral lesions of the talus. Arthrosc J Arthrosc Relat Surg 21(2):159–166

    Article  Google Scholar 

  12. Imhoff AB, Ottl GM, Burkart A, Traub S (1999) Autologous osteochondral transplantation on various joints. Orthopade 28(1):33–44

    PubMed  CAS  Google Scholar 

  13. Jacobi M, Villa V, Magnussen RA, Neyret P (2011) MACI - a new era? Sport Med Arthrosc Rehabil Ther Technol SMARTT 3:10

    Article  PubMed  Google Scholar 

  14. Grässel S, Lorenz J (2014) Tissue-engineering strategies to repair chondral and osteochondral tissue in osteoarthritis: use of mesenchymal stem cells. Curr Rheumatol Rep 16(10):452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Gupta PK, Das AK, Chullikana A, Majumdar AS (2012) Mesenchymal stem cells for cartilage repair in osteoarthritis. Stem Cell Res Ther 3(4):25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Reyes R, Pec MK, Sanchez E, del Rosario C, Delgado A, Evora C (2013) Comparative, osteochondral defect repair: stem cells versus chondrocytes versus bone morphogenetic protein-2, solely or in combination. Eur Cell Mater 25:351–365. discussion 365

    Article  PubMed  CAS  Google Scholar 

  17. Khan WS, Johnson DS, Hardingham TE (2010) The potential of stem cells in the treatment of knee cartilage defects. Knee 17(6):369–374

    Article  PubMed  Google Scholar 

  18. Peterson L, Menche D, Grande D, Pitman M (1984) Chondrocyte transplantation: an experimental model in the rabbit. Trans Orthop Res Soc 9(218)

    Google Scholar 

  19. Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L (1994) Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 331(14):889–895

    Article  CAS  PubMed  Google Scholar 

  20. Bentley G, Bhamra JS, Gikas PD, Skinner JA, Carrington R, Briggs TW (2013) Repair of osteochondral defects in joints – How to achieve success. Injury 44(Supplement 1):S3–10

    Article  PubMed  Google Scholar 

  21. Wood JJ, Malek MA, Frassica FJ, Polder JA, Mohan AK, Bloom ET et al (2006) Autologous cultured chondrocytes: adverse events reported to the United States Food and Drug Administration. J Bone Joint Surg Am 88(3):503–507

    PubMed  Google Scholar 

  22. Peterson L, Minas T, Brittberg M, Nilsson A, Sjogren-Jansson E, Lindahl A (2000) Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res 374:212–234

    Article  Google Scholar 

  23. Benya PD, Shaffer JD (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30(1):215–224

    Article  PubMed  CAS  Google Scholar 

  24. Takata N, Furumatsu T, Ozaki T, Abe N, Naruse K (2011) Comparison between loose fragment chondrocytes and condyle fibrochondrocytes in cellular proliferation and redifferentiation. J Orthop Sci 16(5):589–597

    Article  PubMed  CAS  Google Scholar 

  25. Goldberg A, Mitchell K, Soans J, Kim L, Zaidi R (2017) The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review. J Orthop Surg Res 12:39

    Article  PubMed  PubMed Central  Google Scholar 

  26. Makris EA, Gomoll AH, Malizos KN, Hu JC, Athanasiou KA (2015) Repair and tissue engineering techniques for articular cartilage. Nat Rev Rheumatol 11(1):21–34

    Article  PubMed  CAS  Google Scholar 

  27. Keramaris NC, Kanakaris NK, Tzioupis C, Kontakis G, Giannoudis PV (2008) Translational research: from benchside to bedside. Injury 39(6):643–650

    Article  PubMed  CAS  Google Scholar 

  28. Woolf SH (2008) The meaning of translational research and why it matters. JAMA 299(2):211–213

    Article  PubMed  CAS  Google Scholar 

  29. Lefebvre V, Bhattaram P (2010) Vertebrate skeletogenesis. Curr Top Dev Biol 90:291–317

    Article  PubMed  PubMed Central  Google Scholar 

  30. Yang Y (2013) Skeletal morphogenesis and embryonic development. In: Primer on the metabolic bone diseases and disorders of mineral metabolism. John Wiley & Sons, Inc., Ames, pp 1–14

    Google Scholar 

  31. Su N (2008) FGF signaling: its role in bone development and human skeleton diseases. Front Biosci 13(13):2842

    Article  PubMed  CAS  Google Scholar 

  32. Rosen V (2009) BMP2 signaling in bone development and repair. Cytokine Growth Factor Rev 20(5–6):475–480

    Article  PubMed  CAS  Google Scholar 

  33. Kim HJ, Rice DP, Kettunen PJ, Thesleff I (1998) FGF-, BMP- and Shh-mediated signalling pathways in the regulation of cranial suture morphogenesis and calvarial bone development. Development 125(7):1241–1251

    PubMed  CAS  Google Scholar 

  34. Zanotti S, Canalis E (2012) Notch regulation of bone development and remodeling and related skeletal disorders. Calcif Tissue Int 90(2):69–75

    Article  PubMed  CAS  Google Scholar 

  35. Day TF, Yang Y (2008) Wnt and hedgehog signaling pathways in bone development. J Bone Joint Surg Am 90(Suppl 1):19–24

    Article  PubMed  Google Scholar 

  36. Akiyama H (2002) The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6. Genes Dev 16(21):2813–2828

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Komori T (2010) Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res 339(1):189–195

    Article  PubMed  CAS  Google Scholar 

  38. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284(5411):143–147

    Article  PubMed  CAS  Google Scholar 

  39. da Silva Meirelles L (2006) Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci 119(11):2204–2213

    Article  PubMed  CAS  Google Scholar 

  40. Bielby R, Jones E, McGonagle D (2007) The role of mesenchymal stem cells in maintenance and repair of bone. Injury 38(1):S26–S32

    Article  PubMed  Google Scholar 

  41. Devescovi V, Leonardi E, Ciapetti G, Cenni E (2008) Growth factors in bone repair. Chir Organi Mov 92(3):161–168

    Article  PubMed  Google Scholar 

  42. Maes C, Carmeliet G, Schipani E (2012) Hypoxia-driven pathways in bone development, regeneration and disease. Nat Rev Rheumatol 8(6):358–366

    Article  PubMed  CAS  Google Scholar 

  43. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res 9(5):641–650

    Article  PubMed  CAS  Google Scholar 

  44. Le Blanc K (2003) Immunomodulatory effects of fetal and adult mesenchymal stem cells. Cytotherapy 5(6):485–489

    Article  PubMed  Google Scholar 

  45. Hass R, Kasper C, Böhm S, Jacobs R (2011) Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal [Internet] 9(1):12. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3117820&tool=pmcentrez&rendertype=abstract

    Article  CAS  Google Scholar 

  46. Polymeri A, Giannobile W, Kaigler D (2016) Bone marrow stromal stem cells in tissue engineering and regenerative medicine. Horm Metab Res 48(11):700–713

    Article  PubMed  CAS  Google Scholar 

  47. Romanov YA (2003) Searching for alternative sources of postnatal human mesenchymal stem cells: candidate MSC-like cells from umbilical cord. Stem Cells 21(1):105–110

    Article  PubMed  Google Scholar 

  48. Pierdomenico L, Bonsi L, Calvitti M, Rondelli D, Arpinati M, Chirumbolo G et al (2005) Multipotent mesenchymal stem cells with immunosuppressive activity can be easily isolated from dental pulp. Transplantation 80(6):836–842

    Article  PubMed  Google Scholar 

  49. Zuk P, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell [Internet] 13:4279–4295. Available from: http://www.molbiolcell.org/cgi/content/abstract/13/12/4279

    Article  CAS  Google Scholar 

  50. Mesimäki K, Lindroos B, Törnwall J, Mauno J, Lindqvist C, Kontio R et al (2009) Novel maxillary reconstruction with ectopic bone formation by GMP adipose stem cells. Int J Oral Maxillofac Surg 38(3):201–209

    Article  PubMed  Google Scholar 

  51. Dragoo JL, Carlson G, McCormick F, Khan-Farooqi H, Zhu M, Zuk PA et al (2007) Healing full-thickness cartilage defects using adipose-derived stem cells. Tissue Eng 13(7):1615–1621

    Article  PubMed  CAS  Google Scholar 

  52. Crisan M, Yap S, Casteilla L, Chen C-W, Corselli M, Park TS et al (2008) A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3(3):301–313

    Article  PubMed  CAS  Google Scholar 

  53. Caplan AI, Correa D (2011) The MSC: an injury drugstore. Cell Stem Cell 9(1):11–15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Marolt D, Campos IM, Bhumiratana S, Koren A, Petridis P, Zhang G et al (2012) Engineering bone tissue from human embryonic stem cells. Proc Natl Acad Sci 109(22):8705–8709

    Article  PubMed  PubMed Central  Google Scholar 

  55. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126(4):663–676

    Article  CAS  PubMed  Google Scholar 

  56. Yamanaka S (2010) Patient-specific pluripotent stem cells become even more accessible. Cell Stem Cell 7(1):1–2

    Article  PubMed  CAS  Google Scholar 

  57. Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19(3):180–192

    Article  PubMed  CAS  Google Scholar 

  58. Papadimitropoulos A, Piccinini E, Brachat S, Braccini A, Wendt D, Barbero A et al (2014) Expansion of human mesenchymal stromal cells from fresh bone marrow in a 3D scaffold-based system under direct perfusion. Ivanovic Z, editor. PLoS One 9(7):e102359

    Article  PubMed  PubMed Central  Google Scholar 

  59. Di Maggio N, Piccinini E, Jaworski M, Trumpp A, Wendt DJ, Martin I (2011) Toward modeling the bone marrow niche using scaffold-based 3D culture systems. Biomaterials 32(2):321–329

    Article  PubMed  CAS  Google Scholar 

  60. Pirraco RP, Obokata H, Iwata T, Marques AP, Tsuneda S, Yamato M et al (2011) Development of osteogenic cell sheets for bone tissue engineering applications. Tissue Eng Part A 17(11–12):1507–1515

    Article  PubMed  CAS  Google Scholar 

  61. Juneja SC, Viswanathan S, Ganguly M, Veillette C (2016) A simplified method for the aspiration of bone marrow from patients undergoing hip and knee joint replacement for isolating mesenchymal stem cells and in vitro chondrogenesis. Bone Marrow Res 2016:1–18

    Article  CAS  Google Scholar 

  62. Agata H, Asahina I, Watanabe N, Ishii Y, Kubo N, Ohshima S et al (2010) Characteristic change and loss of in vivo osteogenic abilities of human bone marrow stromal cells during passage. Tissue Eng Part A 16(2):663–673

    Article  PubMed  CAS  Google Scholar 

  63. Galipeau J (2013) The mesenchymal stromal cells dilemma—does a negative phase III trial of random donor mesenchymal stromal cells in steroid-resistant graft-versus-host disease represent a death knell or a bump in the road? Cytotherapy 15(1):2–8

    Article  PubMed  Google Scholar 

  64. Caplan AI (2007) Adult mesenchymal stem cells for tissue engineering versus regenerative medicine. J Cell Physiol [Internet] 213(2):341–347. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17620285

    Article  CAS  Google Scholar 

  65. Mahmoud EE, Tanaka Y, Kamei N, Harada Y, Ohdan H, Adachi N et al (2017) Monitoring immune response after allogeneic transplantation of mesenchymal stem cells for osteochondral repair. J Tissue Eng Regen Med 12(1):e275-e286

    Article  PubMed  CAS  Google Scholar 

  66. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228

    Article  PubMed  CAS  Google Scholar 

  67. Aust L, Devlin B, Foster SJ, Halvorsen YDC, Hicok K, du Laney T et al (2004) Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy 6(1):7–14

    Article  PubMed  CAS  Google Scholar 

  68. Zhu M, Kohan E, Bradley J, Hedrick M, Benhaim P, Zuk P (2009) The effect of age on osteogenic, adipogenic and proliferative potential of female adipose-derived stem cells. J Tissue Eng Regen Med 3(4):290–301

    Article  PubMed  CAS  Google Scholar 

  69. Zanetti AS, Sabliov C, Gimble JM, Hayes DJ (2013) Human adipose-derived stem cells and three-dimensional scaffold constructs: a review of the biomaterials and models currently used for bone regeneration. J Biomed Mater Res Part B Appl Biomater 101B(1):187–199

    Article  CAS  Google Scholar 

  70. Ko E, Yang K, Shin J, Cho S-W (2013) Polydopamine-assisted osteoinductive peptide immobilization of polymer scaffolds for enhanced bone regeneration by human adipose-derived stem cells. Biomacromolecules 14(9):3202–3213

    Article  PubMed  CAS  Google Scholar 

  71. Kakudo N, Shimotsuma A, Miyake S, Kushida S, Kusumoto K (2008) Bone tissue engineering using human adipose-derived stem cells and honeycomb collagen scaffold. J Biomed Mater Res Part A 84A(1):191–197

    Article  CAS  Google Scholar 

  72. Koh YJ, Koh BI, Kim H, Joo HJ, Jin HK, Jeon J et al (2011) Stromal vascular fraction from adipose tissue forms profound vascular network through the dynamic reassembly of blood endothelial cells. Arterioscler Thromb Vasc Biol 31(5):1141–1150

    Article  PubMed  CAS  Google Scholar 

  73. Costa M, Cerqueira MT, Santos TC, Sampaio-Marques B, Ludovico P, Marques AP et al (2017) Cell sheet engineering using the stromal vascular fraction of adipose tissue as a vascularization strategy. Acta Biomater 55:131–143

    Article  PubMed  CAS  Google Scholar 

  74. Costa M, Pirraco RP, Cerqueira MT, Reis RL, Marques AP (2016) Growth factor-free pre-vascularization of cell sheets for tissue engineering. Methods Mol Biol:219–226

    Google Scholar 

  75. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97(25):13625–13630

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Kawashima N (2012) Characterisation of dental pulp stem cells: a new horizon for tissue regeneration? Arch Oral Biol 57(11):1439–1458

    Article  PubMed  Google Scholar 

  77. d’Aquino R, De Rosa A, Lanza V, Tirino V, Laino L, Graziano A et al (2009) Human mandible bone defect repair by the grafting of dental pulp stem/progenitor cells and collagen sponge biocomplexes. Eur Cell Mater 18:75–83

    Article  PubMed  Google Scholar 

  78. Ito K, Yamada Y, Nakamura S, Ueda M (2011) Osteogenic potential of effective bone engineering using dental pulp stem cells, bone marrow stem cells, and periosteal cells for osseointegration of dental implants. Int J Oral Maxillofac Implants 26(5):947–954

    PubMed  Google Scholar 

  79. Yamada Y, Ito K, Nakamura S, Ueda M, Nagasaka T (2011) Promising cell-based therapy for bone regeneration using stem cells from deciduous teeth, dental pulp, and bone marrow. Cell Transplant 20(7):1003–1013

    Article  PubMed  Google Scholar 

  80. Tatullo M, Marrelli M, Shakesheff KM, White LJ (2015) Dental pulp stem cells: function, isolation and applications in regenerative medicine. J Tissue Eng Regen Med 9(11):1205–1216

    Article  PubMed  Google Scholar 

  81. Degistirici Ö, Jäger M, Knipper A (2008) Applicability of cord blood-derived unrestricted somatic stem cells in tissue engineering concepts. Cell Prolif 41(3):421–440

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Atala A, Murphy SV (eds) (2014) Perinatal stem cells, vol 9781493911. Springer New York, New York, pp 1–373

    Google Scholar 

  83. Perin L, Sedrakyan S, Da Sacco S, De Filippo R (2008) Characterization of human amniotic fluid stem cells and their pluripotential capability. Methods Cell Biol:85–99

    Google Scholar 

  84. Deuse T, Stubbendorff M, Tang-Quan K, Phillips N, Kay MA, Eiermann T et al (2011) Immunogenicity and immunomodulatory properties of umbilical cord lining mesenchymal stem cells. Cell Transplant 20(5):655–667

    Article  PubMed  Google Scholar 

  85. Baba K, Yamazaki Y, Takeda A, Uchinuma E (2014) Bone regeneration using Wharton’s jelly mesenchymal stem cells. In: Atala A, Murphy SV (eds) Perinatal stem cells. Springer New York, New York, pp 299–311

    Google Scholar 

  86. Kim J, Ryu S, Ju YM, Yoo JJ, Atala A (2014) Amniotic fluid-derived stem cells for bone tissue engineering. In: Atala A, Murphy SV (eds) Perinatal stem cells. Springer New York, New York, pp 107–114

    Google Scholar 

  87. Handschel J, Naujoks C, Depprich R, Lammers L, Kübler N, Meyer U et al (2011) Embryonic stem cells in scaffold-free three-dimensional cell culture: osteogenic differentiation and bone generation. Head Face Med 7(1):12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Jukes JM, Both SK, Leusink A, Sterk LMT, C a v B, de Boer J (2008) Endochondral bone tissue engineering using embryonic stem cells. Proc Natl Acad Sci 105(19):6840–6845

    Article  PubMed  PubMed Central  Google Scholar 

  89. Marcos-Campos I, Marolt D, Petridis P, Bhumiratana S, Schmidt D, Vunjak-Novakovic G (2012) Bone scaffold architecture modulates the development of mineralized bone matrix by human embryonic stem cells. Biomaterials 33(33):8329–8342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Kang H, Wen C, Hwang Y, Shih Y-RV, Kar M, Seo SW et al (2014) Biomineralized matrix-assisted osteogenic differentiation of human embryonic stem cells. J Mater Chem B Mater Biol Med 2(34):5676–5688

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Blum B, Benvenisty N et al (2008) Adv Cancer Res 100:133–158

    Article  PubMed  Google Scholar 

  92. Hou P, Li Y, Zhang X, Liu C, Guan J, Li H et al (2013) Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science (80- ) 341(6146):651–654

    Article  CAS  Google Scholar 

  93. Wang P, Liu X, Zhao L, Weir MD, Sun J, Chen W et al (2015) Bone tissue engineering via human induced pluripotent, umbilical cord and bone marrow mesenchymal stem cells in rat cranium. Acta Biomater 18:236–248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Jeon OH, Panicker LM, Lu Q, Chae JJ, Feldman RA, Elisseeff JH (2016) Human iPSC-derived osteoblasts and osteoclasts together promote bone regeneration in 3D biomaterials. Sci Rep 6(1):26761

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. TheinHan W, Liu J, Tang M, Chen W, Cheng L, Xu HHK (2013) Induced pluripotent stem cell-derived mesenchymal stem cell seeding on biofunctionalized calcium phosphate cements. Bone Res 1(4):371–384

    Article  PubMed Central  CAS  Google Scholar 

  96. de Peppo GM, Marcos-Campos I, Kahler DJ, Alsalman D, Shang L, Vunjak-Novakovic G et al (2013) Engineering bone tissue substitutes from human induced pluripotent stem cells. Proc Natl Acad Sci 110(21):8680–8685

    Article  PubMed  PubMed Central  Google Scholar 

  97. Yan H, Yu C (2007) Repair of full-thickness cartilage defects with cells of different origin in a rabbit model. Arthrosc J Arthrosc Relat Surg 23(2):178–187

    Article  Google Scholar 

  98. Dashtdar H, Rothan HA, Tay T, Ahmad RE, Ali R, Tay LX et al (2011) A preliminary study comparing the use of allogenic chondrogenic pre-differentiated and undifferentiated mesenchymal stem cells for the repair of full thickness articular cartilage defects in rabbits. J Orthop Res 29(9):1336–1342

    Article  PubMed  Google Scholar 

  99. Beris AE, Lykissas MG, Papageorgiou CD, Georgoulis AD (2005) Advances in articular cartilage repair. Injury 36(4, Supplement):S14–S23

    Article  PubMed  Google Scholar 

  100. Galois L, Freyria A-M, Herbage D, Mainard D (2005) Ingénierie tissulaire du cartilage: état des lieux et perspectives. Pathol Biol 53(10):590–598

    Article  PubMed  CAS  Google Scholar 

  101. Oreffo ROC, Cooper C, Mason C, Clements M (2005) Mesenchymal stem cells. Stem Cell Rev 1(2):169–178

    Article  PubMed  CAS  Google Scholar 

  102. Potian JA, Aviv H, Ponzio NM, Harrison JS, Rameshwar P (2003) Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigens and recall antigens. J Immunol 171(7):3426 LP–3423434

    Article  Google Scholar 

  103. Glennie S, Soeiro I, Dyson PJ, Lam EW-F, Dazzi F (2005) Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 105(7):2821 LP–2822827

    Article  CAS  Google Scholar 

  104. Corcione A, Benvenuto F, Ferretti E, Giunti D, Cappiello V, Cazzanti F et al (2005) Human mesenchymal stem cells modulate B-cell functions. Blood 107(1):367 LP–367372

    Article  CAS  Google Scholar 

  105. Aggarwal S, Pittenger MF (2005) Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood 105(4):1815 LP–1811822

    Article  CAS  Google Scholar 

  106. Kang S-H, Chung Y-G, Oh I-H, Kim Y-S, Min K-O, Chung J-Y (2014) Bone regeneration potential of allogeneic or autogeneic mesenchymal stem cells loaded onto cancellous bone granules in a rabbit radial defect model. Cell Tissue Res 355(1):81–88

    Article  PubMed  CAS  Google Scholar 

  107. Arinzeh TL, Peter SJ, Archambault MP, van den Bos C, Gordon S, Kraus K et al (2003) Allogeneic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J Bone Joint Surg Am 85–A(10):1927–1935

    Article  Google Scholar 

  108. Mei L, Shen B, Ling P, Liu S, Xue J, Liu F et al (2017) Culture-expanded allogenic adipose tissue-derived stem cells attenuate cartilage degeneration in an experimental rat osteoarthritis model. Lammi MJ, editor. PLoS One 12(4):e0176107

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Zhou S, Greenberger JS, Epperly MW, Goff JP, Adler C, LeBoff MS et al (2008) Age-related intrinsic changes in human bone marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell 7(3):335–343

    Article  PubMed  CAS  Google Scholar 

  110. Danisovic L, Varga I, Polak S, Ulicna M, Hlavackova L, Bohmer D et al (2009) Comparison of in vitro chondrogenic potential of human mesenchymal stem cells derived from bone marrow and adipose tissue. Gen Physiol Biophys 28(1):56–62

    Article  PubMed  CAS  Google Scholar 

  111. Saddik D, McNally EG, Richardson M (2004) MRI of Hoffa’s fat pad. Skelet Radiol 33(8):433–444

    Article  CAS  Google Scholar 

  112. Staeubli HU, Bollmann C, Kreutz R, Becker W, Rauschning W (1999) Quantification of intact quadriceps tendon, quadriceps tendon insertion, and suprapatellar fat pad: MR arthrography, anatomy, and cryosections in the sagittal plane. Am J Roentgenol 173(3):691–698

    Article  CAS  Google Scholar 

  113. Pires de Carvalho P, Hamel KM, Duarte R, King AGS, Haque M, Dietrich MA et al (2014) Comparison of infrapatellar and subcutaneous adipose tissue stromal vascular fraction and stromal/stem cells in osteoarthritic subjects. J Tissue Eng Regen Med 8(10):757–762

    Article  PubMed  CAS  Google Scholar 

  114. Koh Y-G, Choi Y-J (2012) Infrapatellar fat pad-derived mesenchymal stem cell therapy for knee osteoarthritis. Knee 19(6):902–907

    Article  PubMed  Google Scholar 

  115. Jurgens WJFM, van Dijk A, Doulabi BZ, Niessen FB, Ritt MJPF, van Milligen FJ et al (2009) Freshly isolated stromal cells from the infrapatellar fat pad are suitable for a one-step surgical procedure to regenerate cartilage tissue. Cytotherapy 11(8):1052–1064

    Article  PubMed  CAS  Google Scholar 

  116. Saw K-Y, Anz A, Siew-Yoke Jee C, Merican S, Ching-Soong Ng R, Roohi SA et al (2013) Articular cartilage regeneration with autologous peripheral blood stem cells versus hyaluronic acid: a randomized controlled trial. Arthrosc J Arthrosc Relat Surg [Internet] 29(4):684–694. Available from: http://www.sciencedirect.com/science/article/pii/S0749806312018993

    Article  Google Scholar 

  117. Fukumoto T, Sperling JW, Sanyal A, Fitzsimmons JS, Reinholz GG, Conover CA et al (2003) Combined effects of insulin-like growth factor-1 and transforming growth factor-β1 on periosteal mesenchymal cells during chondrogenesis in vitro. Osteoarthr Cartil 11(1):55–64

    Article  CAS  Google Scholar 

  118. De Bari C, Dell’Accio F, Tylzanowski P, Luyten FP (2001) Multipotent mesenchymal stem cells from adult human synovial membrane. Arthritis Rheum 44(8):1928–1942

    Article  PubMed  Google Scholar 

  119. Baksh D, Yao R, Tuan RS (2007) Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells [Internet] 25(6):1384–92. Available from: https://doi.org/10.1634/stemcells.2006-0709

    Article  PubMed  CAS  Google Scholar 

  120. Chen M-Y, Lie P-C, Li Z-L, Wei X (2009) Endothelial differentiation of Wharton’s jelly–derived mesenchymal stem cells in comparison with bone marrow–derived mesenchymal stem cells. Exp Hematol [Internet] 37(5):629–640. Available from: http://www.sciencedirect.com/science/article/pii/S0301472X09000514

    Article  CAS  Google Scholar 

  121. Fong C-Y, Chak L-L, Biswas A, Tan J-H, Gauthaman K, Chan W-K et al (2011) Human Wharton’s jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells. Stem Cell Rev Reports [Internet] 7(1):1–16. Available from: https://doi.org/10.1007/s12015-010-9166-x

    Article  CAS  Google Scholar 

  122. Ahmed TAE, Hincke MT (2014) Mesenchymal stem cell-based tissue engineering strategies for repair of articular cartilage. Histol Histopathol 29(6):669–689

    PubMed  CAS  Google Scholar 

  123. Berg LC, Koch TG, Heerkens T, Bessonov K, Thomsen PD, Betts DH (2009) Chondrogenic potential of mesenchymal stromal cells derived from equine bone marrow and umbilical cord blood. Vet Comp Orthop Traumatol 22(5):363–370

    Article  PubMed  CAS  Google Scholar 

  124. Adachi N, Sato K, Usas A, Fu FH, Ochi M, Han C-W et al (2002) Muscle derived, cell based ex vivo gene therapy for treatment of full thickness articular cartilage defects. J Rheumatol 29(9):1920 LP–1921930

    Google Scholar 

  125. Wei Y, Zeng W, Wan R, Wang J, Zhou Q, Qiu S et al (2012) Chondrogenic differentiation of induced pluripotent stem cells from osteoarthritic chondrocytes in alginate matrix. Eur Cell Mater 23:1–12

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  126. Medvedev SP, Grigor’eva EV, Shevchenko AI, Malakhova AA, Dementyeva EV, Shilov AA et al (2010) Human induced pluripotent stem cells derived from fetal neural stem cells successfully undergo directed differentiation into cartilage. Stem Cells Dev 20(6):1099–1112

    Article  PubMed  CAS  Google Scholar 

  127. Nguyen D, Hägg DA, Forsman A, Ekholm J, Nimkingratana P, Brantsing C et al (2017) Cartilage tissue engineering by the 3D bioprinting of iPS cells in a Nanocellulose/alginate bioink. Sci Rep 7:658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Menendez L, Kulik MJ, Page AT, Park SS, Lauderdale JD, Cunningham ML et al (2013) Directed differentiation of human pluripotent cells to neural crest stem cells. Nat Protoc 8(1):203–212

    Article  PubMed  CAS  Google Scholar 

  129. Ishii M, Arias AC, Liu L, Chen Y-B, Bronner ME, Maxson RE (2012) A stable cranial neural crest cell line from mouse. Stem Cells Dev 21(17):3069–3080

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Nagoshi N, Shibata S, Kubota Y, Nakamura M, Nagai Y, Satoh E et al (2017) Ontogeny and multipotency of neural crest-derived stem cells in mouse bone marrow, dorsal root ganglia, and whisker pad. Cell Stem Cell 2(4):392–403

    Article  CAS  Google Scholar 

  131. Chijimatsu R, Ikeya M, Yasui Y, Ikeda Y, Ebina K, Moriguchi Y et al (2017) Characterization of mesenchymal stem cell-like cells derived from human iPSCs via neural crest development and their application for osteochondral repair. Stem Cells Int 2017:1960965

    Article  PubMed  PubMed Central  Google Scholar 

  132. Zhang S, Chu WC, Lai RC, Lim SK, Hui JHP, Toh WS (2017) Exosomes derived from human embryonic mesenchymal stem cells promote osteochondral regeneration. Osteoarthr Cartil 24(12):2135–2140

    Article  Google Scholar 

  133. Solchaga LA, Gao J, Dennis JE, Awadallah A, Lundberg M, Caplan AI et al (2002) Treatment of osteochondral defects with autologous bone marrow in a hyaluronan-based delivery vehicle. Tissue Eng 8(2):333–347

    Article  PubMed  CAS  Google Scholar 

  134. Betsch M, Schneppendahl J, Thuns S, Herten M, Sager M, Jungbluth P et al (2013) Bone marrow aspiration concentrate and platelet rich plasma for osteochondral repair in a porcine osteochondral defect model. PLoS One 8(8):e71602

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Oshima Y, Watanabe N, Matsuda K, Takai S, Kawata M, Kubo T (2017) Fate of transplanted bone-marrow-derived mesenchymal cells during osteochondral repair using transgenic rats to simulate autologous transplantation. Osteoarthr Cartil 12(10):811–817

    Article  Google Scholar 

  136. Saw K-Y, Hussin P, Loke S-C, Azam M, Chen H-C, Tay Y-G et al (2017) Articular cartilage regeneration with autologous marrow aspirate and hyaluronic acid: an experimental study in a goat model. Arthroscopy 25(12):1391–1400

    Article  Google Scholar 

  137. Oliveira JM, Rodrigues MT, Silva SS, Malafaya PB, Gomes ME, Viegas CA et al (2006) Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Biomaterials [Internet] 27(36):6123–6137. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16945410

    Article  CAS  Google Scholar 

  138. Wang X, Wenk E, Zhang X, Meinel L, Vunjak-Novakovic G, Kaplan DL (2009) Growth factor gradients via microsphere delivery in biopolymer scaffolds for osteochondral tissue engineering. J Control Release 134(2):81–90

    Article  PubMed  CAS  Google Scholar 

  139. Lee Y-H, Wu H-C, Yeh C-W, Kuan C-H, Liao H-T, Hsu H-C et al (2017) Enzyme-crosslinked gene-activated matrix for the induction of mesenchymal stem cells in osteochondral tissue regeneration. Acta Biomater 63(Supplement C):210–226

    Article  PubMed  CAS  Google Scholar 

  140. Kuiper NJ, Wang QG, Cartmell SH (2014) A perfusion co-culture bioreactor for osteochondral tissue engineered plugs. J Biomater Tissue Eng 4(2):162–171

    Article  CAS  Google Scholar 

  141. Goldman SM, Barabino GA (2016) Spatial engineering of osteochondral tissue constructs through microfluidically directed differentiation of mesenchymal stem cells. Biores Open Access 5(1):109–117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Jiang J, Nicoll SB, Lu HH (2005) Co-culture of osteoblasts and chondrocytes modulates cellular differentiation in vitro. Biochem Biophys Res Commun 338(2):762–770

    Article  PubMed  CAS  Google Scholar 

  143. Sheehy EJ, Vinardell T, Buckley CT, Kelly DJ (2013) Engineering osteochondral constructs through spatial regulation of endochondral ossification. Acta Biomater 9(3):5484–5492

    Article  PubMed  CAS  Google Scholar 

  144. Lee W, Park J (2016) 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds. Sci Rep 6:29408

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Lam J, Lu S, Meretoja VV, Tabata Y, Mikos AG, Kasper FK (2014) Generation of osteochondral tissue constructs with chondrogenically and osteogenically predifferentiated mesenchymal stem cells encapsulated in bilayered hydrogels. Acta Biomater 10(3):1112–1123

    Article  PubMed  CAS  Google Scholar 

  146. Mellor LF, Mohiti-Asli M, Williams J, Kannan A, Dent MR, Guilak F et al (2015) Extracellular calcium modulates Chondrogenic and osteogenic differentiation of human adipose-derived stem cells: a novel approach for osteochondral tissue engineering using a single stem cell source. Tissue Eng Part A 21(17–18):2323–2333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Song K, Li W, Wang H, Zhang Y, Li L, Wang Y, Wang H, Wang L, Liu T (2016) Development and fabrication of a two-layer tissue engineered osteochondral composite using hybrid hydrogel-cancellous bone scaffolds in a spinner flask. Biomed Mater 11(6):65002

    Article  CAS  Google Scholar 

  148. Cakmak S, Cakmak AS, Kaplan DL, Gumusderelioglu M (2016) A silk fibroin and peptide amphiphile-based co-culture model for osteochondral tissue engineering. Macromol Biosci 16(8):1212–1226

    Article  PubMed  CAS  Google Scholar 

  149. Amadori S, Torricelli P, Panzavolta S, Parrilli A, Fini M, Bigi A (2015) Multi-layered scaffolds for osteochondral tissue engineering: in vitro response of co-cultured human mesenchymal stem cells. Macromol Biosci 15(11):1535–1545

    Article  PubMed  CAS  Google Scholar 

  150. Galperin A, Oldinski RA, Florczyk SJ, Bryers JD, Zhang M, Ratner BD (2013) Integrated bi-layered scaffold for osteochondral tissue engineering. Adv Healthc Mater 2(6):872–883

    Article  PubMed  CAS  Google Scholar 

  151. Gao J, Dennis JE, Solchaga LA, Awadallah AS, Goldberg VM, Caplan AI (2001) Tissue-engineered fabrication of an osteochondral composite graft using rat bone marrow-derived mesenchymal stem cells. Tissue Eng 7(4):363–371

    Article  PubMed  CAS  Google Scholar 

  152. Brunger JM, Huynh NPT, Guenther CM, Perez-Pinera P, Moutos FT, Sanchez-Adams J et al (2014) Scaffold-mediated lentiviral transduction for functional tissue engineering of cartilage. Proc Natl Acad Sci U S A 111(9):E798–E806

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Brunger JM, Huynh NPT, Moutos FT, Guilak F, Gersbach CA (2017) 407. Biomaterial-mediated lentiviral gene delivery for osteochondral tissue engineering. Mol Ther 22:S155

    Google Scholar 

  154. Zhao Q, Wang S, Tian J, Wang L, Dong S, Xia T et al (2013) Combination of bone marrow concentrate and PGA scaffolds enhance bone marrow stimulation in rabbit articular cartilage repair. J Mater Sci Mater Med 24(3):793–801

    Article  PubMed  CAS  Google Scholar 

  155. Agung M, Ochi M, Yanada S, Adachi N, Izuta Y, Yamasaki T et al (2006) Mobilization of bone marrow-derived mesenchymal stem cells into the injured tissues after intraarticular injection and their contribution to tissue regeneration. Knee Surg Sport Traumatol Arthrosc 14(12):1307–1314

    Article  Google Scholar 

  156. Food and Drug Administration (FDA) (2004). Innovation or stagnation: challenge and opportunity on the critical path to New Medical Products [Internet]. Available from: http://www.fda.gov/ScienceResearch/SpecialTopics/CriticalPathInitiative/CriticalPathOpportunitiesReports/ucm077262.htm#intro

Download references

Acknowledgments

The authors would like to thank H2020-MSCA-RISE program, as this work is part of developments carried out in BAMOS project, funded from the European Union’s Horizon 2020 research and innovation program under grant agreement N° 734156. Thanks are also due to the Portuguese Foundation for Science and Technology (FCT) for the distinction attributed to J. M. Oliveira (IF/00423/2012 and IF/01285/2015) and to Rogério Pirraco (IF/00347/2015) under the Investigator FCT program. The authors also thank FCT for the Ph.D. scholarship provided to R. F. Canadas (SFRH/BD/92565/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra P. Marques .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Canadas, R.F., Pirraco, R.P., Oliveira, J.M., Reis, R.L., Marques, A.P. (2018). Stem Cells for Osteochondral Regeneration. In: Oliveira, J., Pina, S., Reis, R., San Roman, J. (eds) Osteochondral Tissue Engineering. Advances in Experimental Medicine and Biology, vol 1059. Springer, Cham. https://doi.org/10.1007/978-3-319-76735-2_10

Download citation

Publish with us

Policies and ethics