Skip to main content

Lung Cancer

  • Chapter
  • First Online:
Serous Effusions

Abstract

Metastatic lung adenocarcinoma is commonly found in serous effusions and, in a subset of patients, is one of the first materials available for diagnosis and molecular characterization. With increased understanding of the molecular mechanism involved in the malignant process and discovery of a plethora of molecular detection methods, including next-generation sequencing, a very accurate prediction of response for targeted therapy is possible with this minimally invasive method. As cells obtained from malignant effusions are not exposed to aldehyde fixatives, these cells can be even better suited for the genomic analyses that are increasingly requested as basis for personalized targeted therapies. The chapter describes our current knowledge of genetic and epigenetic changes in lung cancer, the present classification of lung cancers and how to reach a conclusive diagnosis by effusion cytology integrating ancillary analyses, and molecular approaches and how this may influence the choice of therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jemal A, Thun MJ, Ries LA, Howe HL, Weir HK, Center MM, Ward E, Wu XC, Eheman C, Anderson R, et al. Annual report to the nation on the status of cancer, 1975-2005, featuring trends in lung cancer, tobacco use, and tobacco control. J Natl Cancer Inst. 2008;100(23):1672–94.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ. Cancer statistics, 2008. CA Cancer J Clin. 2008;58(2):71–96.

    Article  PubMed  Google Scholar 

  3. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60(5):277–300.

    Article  PubMed  Google Scholar 

  4. Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C, Thun MJ. Cancer statistics, 2006. CA Cancer J Clin. 2006;56(2):106–30.

    Article  PubMed  Google Scholar 

  5. Porcel JM, Esquerda A, Vives M, Bielsa S. Etiology of pleural effusions: analysis of more than 3,000 consecutive thoracenteses. Arch Bronconeumol. 2014;50(5):161–5.

    Article  PubMed  Google Scholar 

  6. Porcel JM, Gasol A, Bielsa S, Civit C, Light RW, Salud A. Clinical features and survival of lung cancer patients with pleural effusions. Respirology. 2015;20(4):654–9.

    Article  PubMed  Google Scholar 

  7. Travis WDBE, Müller-Hermelink HK, Harris CC. Pathology and genetics of tumours of the lung, pleura, thymus and heart. Lyon: IARC Press; 2004.

    Google Scholar 

  8. Goldstraw P, Crowley J, Chansky K, Giroux DJ, Groome PA, Rami-Porta R, Postmus PE, Rusch V, Sobin L. The IASLC Lung Cancer Staging Project: proposals for the revision of the TNM stage groupings in the forthcoming (seventh) edition of the TNM Classification of malignant tumours. J Thorac Oncol. 2007;2(8):706–14.

    Article  PubMed  Google Scholar 

  9. Mukhopadhyay S, Katzenstein AL. Subclassification of non-small cell lung carcinomas lacking morphologic differentiation on biopsy specimens: Utility of an immunohistochemical panel containing TTF-1, napsin A, p63, and CK5/6. Am J Surg Pathol. 2011;35(1):15–25.

    Article  PubMed  Google Scholar 

  10. McDowell EM, McLaughlin JS, Merenyl DK, Kieffer RF, Harris CC, Trump BF. The respiratory epithelium. V. Histogenesis of lung carcinomas in the human. J Natl Cancer Inst. 1978;61(2):587–606.

    PubMed  CAS  Google Scholar 

  11. Hecht SS. Tobacco smoke carcinogens and lung cancer. J Natl Cancer Inst. 1999;91(14):1194–210.

    Article  PubMed  CAS  Google Scholar 

  12. Yokota J, Shiraishi K, Kohno T. Genetic basis for susceptibility to lung cancer recent progress and future directions. Adv Cancer Res. 2010;109:51–72.

    Article  PubMed  CAS  Google Scholar 

  13. Hung RJ, McKay JD, Gaborieau V, Boffetta P, Hashibe M, Zaridze D, Mukeria A, Szeszenia-Dabrowska N, Lissowska J, Rudnai P, et al. A susceptibility locus for lung cancer maps to nicotinic acetylcholine receptor subunit genes on 15q25. Nature. 2008;452(7187):633–7.

    Article  PubMed  CAS  Google Scholar 

  14. Wistuba II, Behrens C, Virmani AK, Mele G, Milchgrub S, Girard L, Fondon JW III, Garner HR, McKay B, Latif F, et al. High resolution chromosome 3p allelotyping of human lung cancer and preneoplastic/preinvasive bronchial epithelium reveals multiple, discontinuous sites of 3p allele loss and three regions of frequent breakpoints. Cancer Res. 2000;60(7):1949–60.

    PubMed  CAS  Google Scholar 

  15. Weir BA, Woo MS, Getz G, Perner S, Ding L, Beroukhim R, Lin WM, Province MA, Kraja A, Johnson LA, et al. Characterizing the cancer genome in lung adenocarcinoma. Nature. 2007;450(7171):893–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kendall J, Liu Q, Bakleh A, Krasnitz A, Nguyen KC, Lakshmi B, Gerald WL, Powers S, Mu D. Oncogenic cooperation and coamplification of developmental transcription factor genes in lung cancer. Proc Natl Acad Sci U S A. 2007;104(42):16663–8.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tanaka H, Yanagisawa K, Shinjo K, Taguchi A, Maeno K, Tomida S, Shimada Y, Osada H, Kosaka T, Matsubara H, et al. Lineage-specific dependency of lung adenocarcinomas on the lung development regulator TTF-1. Cancer Res. 2007;67(13):6007–11.

    Article  PubMed  CAS  Google Scholar 

  18. Nymark P, Wikman H, Ruosaari S, Hollmen J, Vanhala E, Karjalainen A, Anttila S, Knuutila S. Identification of specific gene copy number changes in asbestos-related lung cancer. Cancer Res. 2006;66(11):5737–43.

    Article  PubMed  CAS  Google Scholar 

  19. Kettunen E, Aavikko M, Nymark P, Ruosaari S, Wikman H, Vanhala E, Salmenkivi K, Pirinen R, Karjalainen A, Kuosma E, et al. DNA copy number loss and allelic imbalance at 2p16 in lung cancer associated with asbestos exposure. Br J Cancer. 2009;100(8):1336–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Nymark P, Kettunen E, Aavikko M, Ruosaari S, Kuosma E, Vanhala E, Salmenkivi K, Pirinen R, Karjalainen A, Knuutila S, et al. Molecular alterations at 9q33.1 and polyploidy in asbestos-related lung cancer. Clin Cancer Res. 2009;15(2):468–75.

    Article  PubMed  CAS  Google Scholar 

  21. Mutsaers SE. The mesothelial cell. Int J Biochem Cell Biol. 2004;36(1):9–16.

    Article  PubMed  CAS  Google Scholar 

  22. Mutsaers SE, Wilkosz S. Structure and function of mesothelial cells. Cancer Treat Res. 2007;134:1–19.

    PubMed  CAS  Google Scholar 

  23. Graves EE, Vilalta M, Cecic IK, Erler JT, Tran PT, Felsher D, Sayles L, Sweet-Cordero A, Le QT, Giaccia AJ. Hypoxia in models of lung cancer: implications for targeted therapeutics. Clin Cancer Res. 2010;16(19):4843–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Graves EE, Maity A, Le QT. The tumor microenvironment in non-small-cell lung cancer. Semin Radiat Oncol. 2010;20(3):156–63.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kassis J, Klominek J, Kohn EC. Tumor microenvironment: what can effusions teach us? Diagn Cytopathol. 2005;33(5):316–9.

    Article  PubMed  Google Scholar 

  26. Kohn EC, Travers LA, Kassis J, Broome U, Klominek J. Malignant effusions are sources of fibronectin and other promigratory and proinvasive components. Diagn Cytopathol. 2005;33(5):300–8.

    Article  PubMed  CAS  Google Scholar 

  27. Quaranta V, Giannelli G. Cancer invasion: watch your neighbourhood. Tumori. 2003;89(4):343–8.

    Article  PubMed  Google Scholar 

  28. Jantz MA, Antony VB. Pathophysiology of the pleura. Respiration. 2008;75(2):121–33.

    Article  PubMed  Google Scholar 

  29. Lynch CC, Matrisian LM. Matrix metalloproteinases in tumor-host cell communication. Differentiation. 2002;70(9-10):561–73.

    Article  PubMed  CAS  Google Scholar 

  30. O'Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS, Flynn E, Birkhead JR, Olsen BR, Folkman J. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 1997;88(2):277–85.

    Article  PubMed  CAS  Google Scholar 

  31. Gulyas M, Dobra K, Hjerpe A. Expression of genes coding for proteoglycans and Wilms’ tumour susceptibility gene 1 (WT1) by variously differentiated benign human mesothelial cells. Differentiation. 1999;65(2):89–96.

    PubMed  CAS  Google Scholar 

  32. Sharma RK, Mohammed KA, Nasreen N, Hardwick J, Van Horn RD, Ramirez-Icaza C, Antony VB. Defensive role of pleural mesothelial cell sialomucins in tumor metastasis. Chest. 2003;124(2):682–7.

    Article  PubMed  CAS  Google Scholar 

  33. Ponta H, Wainwright D, Herrlich P. The CD44 protein family. Int J Biochem Cell Biol. 1998;30(3):299–305.

    Article  PubMed  CAS  Google Scholar 

  34. Lin CC, Chen LC, Tseng VS, Yan JJ, Lai WW, Su WP, Lin CH, Huang CY, Su WC. Malignant pleural effusion cells show aberrant glucose metabolism gene expression. Eur Respir J. 2011;37(6):1453–65.

    Article  PubMed  Google Scholar 

  35. Grove CS, Lee YC. Vascular endothelial growth factor: the key mediator in pleural effusion formation. Curr Opin Pulm Med. 2002;8(4):294–301.

    Article  PubMed  Google Scholar 

  36. Cheng D, Lee YC, Rogers JT, Perkett EA, Moyers JP, Rodriguez RM, Light RW. Vascular endothelial growth factor level correlates with transforming growth factor-beta isoform levels in pleural effusions. Chest. 2000;118(6):1747–53.

    Article  PubMed  CAS  Google Scholar 

  37. Lee YC, Lane KB. The many faces of transforming growth factor-beta in pleural diseases. Curr Opin Pulm Med. 2001;7(4):173–9.

    Article  PubMed  CAS  Google Scholar 

  38. Gary Lee YC, Melkerneker D, Thompson PJ, Light RW, Lane KB. Transforming growth factor beta induces vascular endothelial growth factor elaboration from pleural mesothelial cells in vivo and in vitro. Am J Respir Crit Care Med. 2002;165(1):88–94.

    Article  PubMed  CAS  Google Scholar 

  39. Kishiro I, Kato S, Fuse D, Yoshida T, Machida S, Kaneko N. Clinical significance of vascular endothelial growth factor in patients with primary lung cancer. Respirology. 2002;7(2):93–8.

    Article  PubMed  Google Scholar 

  40. Yanagawa H, Takeuchi E, Suzuki Y, Ohmoto Y, Bando H, Sone S. Vascular endothelial growth factor in malignant pleural effusion associated with lung cancer. Cancer Immunol Immunother. 1999;48(7):396–400.

    Article  PubMed  CAS  Google Scholar 

  41. Thickett DR, Armstrong L, Millar AB. Vascular endothelial growth factor (VEGF) in inflammatory and malignant pleural effusions. Thorax. 1999;54(8):707–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Ishimoto O, Saijo Y, Narumi K, Kimura Y, Ebina M, Matsubara N, Asou N, Nakai Y, Nukiwa T. High level of vascular endothelial growth factor in hemorrhagic pleural effusion of cancer. Oncology. 2002;63(1):70–5.

    Article  PubMed  CAS  Google Scholar 

  43. Tomimoto H, Yano S, Muguruma H, Kakiuchi S, Sone S. Levels of soluble vascular endothelial growth factor receptor 1 are elevated in the exudative pleural effusions. J Med Invest. 2007;54(1-2):146–53.

    Article  PubMed  Google Scholar 

  44. Safi A, Sadmi M, Martinet N, Menard O, Vaillant P, Gallati H, Hosang M, Martinet Y. Presence of elevated levels of platelet-derived growth factor (PDGF) in lung adenocarcinoma pleural effusions. Chest. 1992;102(1):204–7.

    Article  PubMed  CAS  Google Scholar 

  45. Xirouchaki N, Tzanakis N, Bouros D, Kyriakou D, Karkavitsas N, Alexandrakis M, Siafakas NM. Diagnostic value of interleukin-1alpha, interleukin-6, and tumor necrosis factor in pleural effusions. Chest. 2002;121(3):815–20.

    Article  PubMed  CAS  Google Scholar 

  46. Aoe K, Hiraki A, Murakami T, Murakami K, Makihata K, Takao K, Eda R, Maeda T, Sugi K, Darzynkiewicz Z, et al. Relative abundance and patterns of correlation among six cytokines in pleural fluid measured by cytometric bead array. Int J Mol Med. 2003;12(2):193–8.

    PubMed  CAS  Google Scholar 

  47. Chen YM, Yang WK, Whang-Peng J, Tsai CM, Perng RP. An analysis of cytokine status in the serum and effusions of patients with tuberculous and lung cancer. Lung Cancer. 2001;31(1):25–30.

    Article  PubMed  CAS  Google Scholar 

  48. Kotyza J, Havel D, Vrzalova J, Kulda V, Pesek M. Diagnostic and prognostic significance of inflammatory markers in lung cancer-associated pleural effusions. Int J Biol Markers. 2010;25(1):12–20.

    Article  PubMed  CAS  Google Scholar 

  49. Pao W, Iafrate AJ, Su Z. Genetically informed lung cancer medicine. J Pathol. 2011;223(2):230–40.

    Article  PubMed  CAS  Google Scholar 

  50. Bronte G, Rizzo S, La Paglia L, Adamo V, Siragusa S, Ficorella C, Santini D, Bazan V, Colucci G, Gebbia N, et al. Driver mutations and differential sensitivity to targeted therapies: a new approach to the treatment of lung adenocarcinoma. Cancer Treat Rev. 2010;36(Suppl 3):S21–9.

    Article  PubMed  CAS  Google Scholar 

  51. Mitsudomi T, Yatabe Y. Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer. Cancer Sci. 2007;98(12):1817–24.

    Article  PubMed  CAS  Google Scholar 

  52. Ladanyi M, Pao W. Lung adenocarcinoma: guiding EGFR-targeted therapy and beyond. Mod Pathol. 2008;21(Suppl 2):S16–22.

    Article  PubMed  CAS  Google Scholar 

  53. Sharma SV, Bell DW, Settleman J, Haber DA. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7(3):169–81.

    Article  PubMed  CAS  Google Scholar 

  54. Shigematsu H, Gazdar AF. Somatic mutations of epidermal growth factor receptor signaling pathway in lung cancers. Int J Cancer. 2006;118(2):257–62.

    Article  PubMed  CAS  Google Scholar 

  55. Kumar A, Petri ET, Halmos B, Boggon TJ. Structure and clinical relevance of the epidermal growth factor receptor in human cancer. J Clin Oncol. 2008;26(10):1742–51.

    Article  PubMed  CAS  Google Scholar 

  56. Wu SG, Gow CH, Yu CJ, Chang YL, Yang CH, Hsu YC, Shih JY, Lee YC, Yang PC. Frequent epidermal growth factor receptor gene mutations in malignant pleural effusion of lung adenocarcinoma. Eur Respir J. 2008;32(4):924–30.

    Article  PubMed  CAS  Google Scholar 

  57. Zou J, Bella AE, Chen Z, Han X, Su C, Lei Y, Luo H. Frequency of EGFR mutations in lung adenocarcinoma with malignant pleural effusion: Implication of cancer biological behaviour regulated by EGFR mutation. J Int Med Res. 2014;42(5):1110–7.

    Article  PubMed  CAS  Google Scholar 

  58. Rodriguez EF, Shabihkhani M, Carter J, Maleki Z. Molecular alterations in patients with pulmonary adenocarcinoma presenting with malignant pleural effusion at the first diagnosis. Acta Cytol. 2017;61(3):214–22.

    Article  PubMed  CAS  Google Scholar 

  59. Hung MS, Lin CK, Leu SW, Wu MY, Tsai YH, Yang CT. Epidermal growth factor receptor mutations in cells from non-small cell lung cancer malignant pleural effusions. Chang Gung Med J. 2006;29(4):373–9.

    PubMed  Google Scholar 

  60. Soh J, Toyooka S, Aoe K, Asano H, Ichihara S, Katayama H, Hiraki A, Kiura K, Aoe M, Sano Y, et al. Usefulness of EGFR mutation screening in pleural fluid to predict the clinical outcome of gefitinib treated patients with lung cancer. Int J Cancer. 2006;119(10):2353–8.

    Article  PubMed  CAS  Google Scholar 

  61. Soh J, Toyooka S, Ichihara S, Suehisa H, Kobayashi N, Ito S, Yamane M, Aoe M, Sano Y, Kiura K, et al. EGFR mutation status in pleural fluid predicts tumor responsiveness and resistance to gefitinib. Lung Cancer. 2007;56(3):445–8.

    Article  PubMed  Google Scholar 

  62. Jian G, Songwen Z, Ling Z, Qinfang D, Jie Z, Liang T, Caicun Z. Prediction of epidermal growth factor receptor mutations in the plasma/pleural effusion to efficacy of gefitinib treatment in advanced non-small cell lung cancer. J Cancer Res Clin Oncol. 2010;136(9):1341–7.

    Article  PubMed  CAS  Google Scholar 

  63. Soung YH, Lee JW, Kim SY, Seo SH, Park WS, Nam SW, Song SY, Han JH, Park CK, Lee JY, et al. Mutational analysis of EGFR and K-RAS genes in lung adenocarcinomas. Virchows Arch. 2005;446(5):483–8.

    Article  PubMed  CAS  Google Scholar 

  64. Pao W, Wang TY, Riely GJ, Miller VA, Pan Q, Ladanyi M, Zakowski MF, Heelan RT, Kris MG, Varmus HE. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med. 2005;2(1):e17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Zhu CQ, Ding K, Strumpf D, Weir BA, Meyerson M, Pennell N, Thomas RK, Naoki K, Ladd-Acosta C, Liu N, et al. Prognostic and predictive gene signature for adjuvant chemotherapy in resected non-small-cell lung cancer. J Clin Oncol. 2010;28(29):4417–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Bass AJ, Watanabe H, Mermel CH, Yu S, Perner S, Verhaak RG, Kim SY, Wardwell L, Tamayo P, Gat-Viks I, et al. SOX2 is an amplified lineage-survival oncogene in lung and esophageal squamous cell carcinomas. Nat Genet. 2009;41(11):1238–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Wagner PL, Perner S, Rickman DS, LaFargue CJ, Kitabayashi N, Johnstone SF, Weir BA, Meyerson M, Altorki NK, Rubin MA. In situ evidence of KRAS amplification and association with increased p21 levels in non-small cell lung carcinoma. Am J Clin Pathol. 2009;132(4):500–5.

    Article  PubMed  CAS  Google Scholar 

  68. Ramos AH, Dutt A, Mermel C, Perner S, Cho J, Lafargue CJ, Johnson LA, Stiedl AC, Tanaka KE, Bass AJ, et al. Amplification of chromosomal segment 4q12 in non-small cell lung cancer. Cancer Biol Ther. 2009;8(21):2042–50.

    Article  PubMed  CAS  Google Scholar 

  69. Sos ML, Michel K, Zander T, Weiss J, Frommolt P, Peifer M, Li D, Ullrich R, Koker M, Fischer F, et al. Predicting drug susceptibility of non-small cell lung cancers based on genetic lesions. J Clin Invest. 2009;119(6):1727–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Sos ML, Koker M, Weir BA, Heynck S, Rabinovsky R, Zander T, Seeger JM, Weiss J, Fischer F, Frommolt P, et al. PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR. Cancer Res. 2009;69(8):3256–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Barletta JA, Perner S, Iafrate AJ, Yeap BY, Weir BA, Johnson LA, Johnson BE, Meyerson M, Rubin MA, Travis WD, et al. Clinical significance of TTF-1 protein expression and TTF-1 gene amplification in lung adenocarcinoma. J Cell Mol Med. 2009;13(8B):1977–86.

    Article  PubMed  Google Scholar 

  72. Ding L, Getz G, Wheeler DA, Mardis ER, McLellan MD, Cibulskis K, Sougnez C, Greulich H, Muzny DM, Morgan MB, et al. Somatic mutations affect key pathways in lung adenocarcinoma. Nature. 2008;455(7216):1069–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Perner S, Wagner PL, Soltermann A, LaFargue C, Tischler V, Weir BA, Weder W, Meyerson M, Giordano TJ, Moch H, et al. TTF1 expression in non-small cell lung carcinoma: association with TTF1 gene amplification and improved survival. J Pathol. 2009;217(1):65–72.

    Article  PubMed  CAS  Google Scholar 

  74. Shedden K, Taylor JM, Enkemann SA, Tsao MS, Yeatman TJ, Gerald WL, Eschrich S, Jurisica I, Giordano TJ, Misek DE, et al. Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med. 2008;14(8):822–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Minami Y, Shimamura T, Shah K, LaFramboise T, Glatt KA, Liniker E, Borgman CL, Haringsma HJ, Feng W, Weir BA, et al. The major lung cancer-derived mutants of ERBB2 are oncogenic and are associated with sensitivity to the irreversible EGFR/ERBB2 inhibitor HKI-272. Oncogene. 2007;26(34):5023–7.

    Article  PubMed  CAS  Google Scholar 

  76. Thomas RK, Weir B, Meyerson M. Genomic approaches to lung cancer. Clin Cancer Res. 2006;12(14 Pt 2):4384s–91s.

    Article  PubMed  CAS  Google Scholar 

  77. Zhao X, Weir BA, LaFramboise T, Lin M, Beroukhim R, Garraway L, Beheshti J, Lee JC, Naoki K, Richards WG, et al. Homozygous deletions and chromosome amplifications in human lung carcinomas revealed by single nucleotide polymorphism array analysis. Cancer Res. 2005;65(13):5561–70.

    Article  PubMed  CAS  Google Scholar 

  78. Suda K, Tomizawa K, Mitsudomi T. Biological and clinical significance of KRAS mutations in lung cancer: an oncogenic driver that contrasts with EGFR mutation. Cancer Metastasis Rev. 2010;29(1):49–60.

    Article  PubMed  CAS  Google Scholar 

  79. Carter J, Miller JA, Feller-Kopman D, Ettinger D, Sidransky D, Maleki Z. Molecular profiling of malignant pleural effusion in metastatic non-small-cell lung carcinoma. The effect of preanalytical factors. Ann Am Thorac Soc. 2017;14(7):1169–76.

    PubMed  Google Scholar 

  80. Jordan EJ, Kim HR, Arcila ME, Barron D, Chakravarty D, Gao J, Chang MT, Ni A, Kundra R, Jonsson P, et al. Prospective comprehensive molecular characterization of lung adenocarcinomas for efficient patient matching to approved and emerging therapies. Cancer Discov. 2017;7(6):596–609.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, Fujiwara S, Watanabe H, Kurashina K, Hatanaka H, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448(7153):561–6.

    Article  PubMed  CAS  Google Scholar 

  82. Inamura K, Takeuchi K, Togashi Y, Nomura K, Ninomiya H, Okui M, Satoh Y, Okumura S, Nakagawa K, Soda M, et al. EML4-ALK fusion is linked to histological characteristics in a subset of lung cancers. J Thorac Oncol. 2008;3(1):13–7.

    Article  PubMed  Google Scholar 

  83. Sasaki T, Rodig SJ, Chirieac LR, Janne PA. The biology and treatment of EML4-ALK non-small cell lung cancer. Eur J Cancer. 2010;46(10):1773–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Shaw AT, Yeap BY, Mino-Kenudson M, Digumarthy SR, Costa DB, Heist RS, Solomon B, Stubbs H, Admane S, McDermott U, et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol. 2009;27(26):4247–53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Zhang X, Zhang S, Yang X, Yang J, Zhou Q, Yin L, An S, Lin J, Chen S, Xie Z, et al. Fusion of EML4 and ALK is associated with development of lung adenocarcinomas lacking EGFR and KRAS mutations and is correlated with ALK expression. Mol Cancer. 2010;9:188.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Zhong J, Li X, Bai H, Zhao J, Wang Z, Duan J, An T, Wu M, Wang Y, Wang S, et al. Malignant pleural effusion cell blocks are substitutes for tissue in EML4-ALK rearrangement detection in patients with advanced non-small-cell lung cancer. Cytopathology. 2016;27(6):433–43.

    Article  PubMed  CAS  Google Scholar 

  87. Zhou J, Yao H, Zhao J, Zhang S, You Q, Sun K, Zou Y, Zhou C. Cell block samples from malignant pleural effusion might be valid alternative samples for anaplastic lymphoma kinase detection in patients with advanced non-small-cell lung cancer. Histopathology. 2015;66(7):949–54.

    Article  PubMed  Google Scholar 

  88. Wang W, Tang Y, Li J, Jiang L, Jiang Y, Su X. Detection of ALK rearrangements in malignant pleural effusion cell blocks from patients with advanced non-small cell lung cancer: a comparison of Ventana immunohistochemistry and fluorescence in situ hybridization. Cancer Cytopathol. 2015;123(2):117–22.

    Article  PubMed  CAS  Google Scholar 

  89. Savic S, Bode B, Diebold J, Tosoni I, Barascud A, Baschiera B, Grilli B, Herzog M, Obermann E, Bubendorf L. Detection of ALK-positive non-small-cell lung cancers on cytological specimens: high accuracy of immunocytochemistry with the 5A4 clone. J Thorac Oncol. 2013;8(8):1004–11.

    Article  PubMed  CAS  Google Scholar 

  90. Liu L, Zhan P, Zhou X, Song Y, Yu L, Wang J. Detection of EML4-ALK in lung adenocarcinoma using pleural effusion with FISH, IHC, and RT-PCR methods. PLoS One. 2015;10(3):e0117032.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Yamamoto G, Kikuchi M, Kobayashi S, Arai Y, Fujiyoshi K, Wakatsuki T, Kakuta M, Yamane Y, Iijima Y, Mizutani H, et al. Routine genetic testing of lung cancer specimens derived from surgery, bronchoscopy and fluid aspiration by next generation sequencing. Int J Oncol. 2017;50(5):1579–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Ali SM, Hensing T, Schrock AB, Allen J, Sanford E, Gowen K, Kulkarni A, He J, Suh JH, Lipson D, et al. Comprehensive genomic profiling identifies a subset of Crizotinib-responsive ALK-rearranged non-small cell lung cancer not detected by fluorescence in situ hybridization. Oncologist. 2016;21(6):762–70.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Bergethon K, Shaw AT, Ou SH, Katayama R, Lovly CM, McDonald NT, Massion PP, Siwak-Tapp C, Gonzalez A, Fang R, et al. ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol. 2012;30(8):863–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Rossi G, Ragazzi M, Tamagnini I, Mengoli MC, Vincenzi G, Barbieri F, Piccioli S, Bisagni A, Vavala T, Righi L, et al. Does immunohistochemistry represent a robust alternative technique in determining drugable predictive gene alterations in non-small cell lung cancer? Curr Drug Targets. 2017;18(1):13–26.

    Article  PubMed  CAS  Google Scholar 

  95. Drilon A, Somwar R, Wagner JP, Vellore NA, Eide CA, Zabriskie MS, Arcila ME, Hechtman JF, Wang L, Smith RS, et al. A novel Crizotinib-resistant solvent-front mutation responsive to Cabozantinib therapy in a patient with ROS1-rearranged lung cancer. Clin Cancer Res. 2016;22(10):2351–8.

    Article  PubMed  CAS  Google Scholar 

  96. Wang R, Hu H, Pan Y, Li Y, Ye T, Li C, Luo X, Wang L, Li H, Zhang Y, et al. RET fusions define a unique molecular and clinicopathologic subtype of non-small-cell lung cancer. J Clin Oncol. 2012;30(35):4352–9.

    Article  PubMed  CAS  Google Scholar 

  97. Drilon A, Rekhtman N, Arcila M, Wang L, Ni A, Albano M, Van Voorthuysen M, Somwar R, Smith RS, Montecalvo J, et al. Cabozantinib in patients with advanced RET-rearranged non-small-cell lung cancer: an open-label, single-centre, phase 2, single-arm trial. Lancet Oncol. 2016;17(12):1653–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Sekido Y, Fong KM, Minna JD. Progress in understanding the molecular pathogenesis of human lung cancer. Biochim Biophys Acta. 1998;1378(1):F21–59.

    PubMed  CAS  Google Scholar 

  99. Salgia R, Skarin AT. Molecular abnormalities in lung cancer. J Clin Oncol. 1998;16(3):1207–17.

    Article  PubMed  CAS  Google Scholar 

  100. Tong JH, Yeung SF, Chan AW, Chung LY, Chau SL, Lung RW, Tong CY, Chow C, Tin EK, Yu YH, et al. MET amplification and Exon 14 splice site mutation define unique molecular subgroups of non-small cell lung carcinoma with poor prognosis. Clin Cancer Res. 2016;22(12):3048–56.

    Article  PubMed  CAS  Google Scholar 

  101. Cassidy RJ, Zhang X, Patel PR, Shelton JW, Escott CE, Sica GL, Rossi MR, Hill CE, Steuer CE, Pillai RN, et al. Next-generation sequencing and clinical outcomes of patients with lung adenocarcinoma treated with stereotactic body radiotherapy. Cancer. 2017;123(19):3681–90.

    Article  PubMed  CAS  Google Scholar 

  102. Paik PK, Drilon A, Fan PD, Yu H, Rekhtman N, Ginsberg MS, Borsu L, Schultz N, Berger MF, Rudin CM, et al. Response to MET inhibitors in patients with stage IV lung adenocarcinomas harboring MET mutations causing exon 14 skipping. Cancer Discov. 2015;5(8):842–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Cortot AB, Kherrouche Z, Descarpentries C, Wislez M, Baldacci S, Furlan A, Tulasne D. Exon 14 deleted MET receptor as a new biomarker and target in cancers. J Natl Cancer Inst. 2017;109(5).

    Google Scholar 

  104. Kitamura H, Yazawa T, Sato H, Okudela K, Shimoyamada H. Small cell lung cancer: significance of RB alterations and TTF-1 expression in its carcinogenesis, phenotype, and biology. Endocr Pathol. 2009;20(2):101–7.

    Article  PubMed  CAS  Google Scholar 

  105. Wistuba II, Gazdar AF, Minna JD. Molecular genetics of small cell lung carcinoma. Semin Oncol. 2001;28(2 Suppl 4):3–13.

    Article  PubMed  CAS  Google Scholar 

  106. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

    Article  PubMed  CAS  Google Scholar 

  107. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. He X, He L, Hannon GJ. The guardian's little helper: microRNAs in the p53 tumor suppressor network. Cancer Res. 2007;67(23):11099–101.

    Article  PubMed  CAS  Google Scholar 

  109. He L, He X, Lowe SW, Hannon GJ. microRNAs join the p53 network--another piece in the tumour-suppression puzzle. Nat Rev Cancer. 2007;7(11):819–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  110. He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, et al. A microRNA component of the p53 tumour suppressor network. Nature. 2007;447(7148):1130–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ. RAS is regulated by the let-7 microRNA family. Cell. 2005;120(5):635–47.

    Article  PubMed  CAS  Google Scholar 

  112. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8.

    Article  PubMed  CAS  Google Scholar 

  113. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A. 2004;101(9):2999–3004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Calin GA, Croce CM. MicroRNAs and chromosomal abnormalities in cancer cells. Oncogene. 2006;25(46):6202–10.

    Article  PubMed  CAS  Google Scholar 

  115. Calin GA, Croce CM. MicroRNA signatures in human cancers. Nat Rev Cancer. 2006;6(11):857–66.

    Article  PubMed  CAS  Google Scholar 

  116. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18(10):997–1006.

    Article  PubMed  CAS  Google Scholar 

  117. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M, Stephens RM, Okamoto A, Yokota J, Tanaka T, et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell. 2006;9(3):189–98.

    Article  PubMed  CAS  Google Scholar 

  118. Rabinowits G, Gercel-Taylor C, Day JM, Taylor DD, Kloecker GH. Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer. 2009;10(1):42–6.

    Article  PubMed  CAS  Google Scholar 

  119. Lin PY, Yu SL, Yang PC. MicroRNA in lung cancer. Br J Cancer. 2010;103(8):1144–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Heneghan HM, Miller N, Kerin MJ. MiRNAs as biomarkers and therapeutic targets in cancer. Curr Opin Pharmacol. 2010;10(5):543–50.

    Article  PubMed  CAS  Google Scholar 

  121. Holloway AJ, Diyagama DS, Opeskin K, Creaney J, Robinson BW, Lake RA, Bowtell DD. A molecular diagnostic test for distinguishing lung adenocarcinoma from malignant mesothelioma using cells collected from pleural effusions. Clin Cancer Res. 2006;12(17):5129–35.

    Article  PubMed  CAS  Google Scholar 

  122. Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D, Joshi MB, Harpole D, Lancaster JM, Berchuck A, et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature. 2006;439(7074):353–7.

    Article  PubMed  CAS  Google Scholar 

  123. Nguyen DX, Chiang AC, Zhang XH, Kim JY, Kris MG, Ladanyi M, Gerald WL, Massague J. WNT/TCF signaling through LEF1 and HOXB9 mediates lung adenocarcinoma metastasis. Cell. 2009;138(1):51–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Brock MV, Hooker CM, Yung R, Guo M, Han Y, Ames SE, Chang D, Yang SC, Mason D, Sussman M, et al. Can we improve the cytologic examination of malignant pleural effusions using molecular analysis? Ann Thorac Surg. 2005;80(4):1241–7.

    Article  PubMed  Google Scholar 

  125. Ng CS, Zhang J, Wan S, Lee TW, Arifi AA, Mok T, Lo DY, Yim AP. Tumor p16M is a possible marker of advanced stage in non-small cell lung cancer. J Surg Oncol. 2002;79(2):101–6.

    Article  PubMed  Google Scholar 

  126. Gui S, Liu H, Zhang L, Zuo L, Zhou Q, Fei G, Wang Y. Clinical significance of the detection of the homozygous deletion of P16 gene in malignant pleural effusion. Intern Med. 2007;46(15):1161–6.

    Article  PubMed  Google Scholar 

  127. Toyooka S, Toyooka KO, Maruyama R, Virmani AK, Girard L, Miyajima K, Harada K, Ariyoshi Y, Takahashi T, Sugio K, et al. DNA methylation profiles of lung tumors. Mol Cancer Ther. 2001;1(1):61–7.

    PubMed  CAS  Google Scholar 

  128. Katayama H, Hiraki A, Aoe K, Fujiwara K, Matsuo K, Maeda T, Murakami T, Toyooka S, Sugi K, Ueoka H, et al. Aberrant promoter methylation in pleural fluid DNA for diagnosis of malignant pleural effusion. Int J Cancer. 2007;120(10):2191–5.

    Article  PubMed  CAS  Google Scholar 

  129. Toyooka S, Tokumo M, Shigematsu H, Matsuo K, Asano H, Tomii K, Ichihara S, Suzuki M, Aoe M, Date H, et al. Mutational and epigenetic evidence for independent pathways for lung adenocarcinomas arising in smokers and never smokers. Cancer Res. 2006;66(3):1371–5.

    Article  PubMed  CAS  Google Scholar 

  130. Suzuki M, Shigematsu H, Iizasa T, Hiroshima K, Nakatani Y, Minna JD, Gazdar AF, Fujisawa T. Exclusive mutation in epidermal growth factor receptor gene, HER-2, and KRAS, and synchronous methylation of nonsmall cell lung cancer. Cancer. 2006;106(10):2200–7.

    Article  PubMed  CAS  Google Scholar 

  131. Schroeder JA, Thompson MC, Gardner MM, Gendler SJ. Transgenic MUC1 interacts with epidermal growth factor receptor and correlates with mitogen-activated protein kinase activation in the mouse mammary gland. J Biol Chem. 2001;276(16):13057–64.

    Article  PubMed  CAS  Google Scholar 

  132. Li Y, Ren J, Yu W, Li Q, Kuwahara H, Yin L, Carraway KL III, Kufe D. The epidermal growth factor receptor regulates interaction of the human DF3/MUC1 carcinoma antigen with c-Src and beta-catenin. J Biol Chem. 2001;276(38):35239–42.

    Article  PubMed  CAS  Google Scholar 

  133. Pao W, Kris MG, Iafrate AJ, Ladanyi M, Janne PA, Wistuba II, Miake-Lye R, Herbst RS, Carbone DP, Johnson BE, et al. Integration of molecular profiling into the lung cancer clinic. Clin Cancer Res. 2009;15(17):5317–22.

    Article  PubMed  Google Scholar 

  134. Jacot W, Lhermitte L, Dossat N, Pujol JL, Molinari N, Daures JP, Maudelonde T, Mange A, Solassol J. Serum proteomic profiling of lung cancer in high-risk groups and determination of clinical outcomes. J Thorac Oncol. 2008;3(8):840–50.

    Article  PubMed  Google Scholar 

  135. Tyan YC, Wu HY, Lai WW, Su WC, Liao PC. Proteomic profiling of human pleural effusion using two-dimensional nano liquid chromatography tandem mass spectrometry. J Proteome Res. 2005;4(4):1274–86.

    Article  PubMed  CAS  Google Scholar 

  136. Tyan YC, Wu HY, Su WC, Chen PW, Liao PC. Proteomic analysis of human pleural effusion. Proteomics. 2005;5(4):1062–74.

    Article  PubMed  CAS  Google Scholar 

  137. Kim JH, Choi YD, Lee JS, Lee JH, Nam JH, Choi C. Utility of thyroid transcription factor-1 and CDX-2 in determining the primary site of metastatic adenocarcinomas in serous effusions. Acta Cytol. 2010;54(3):277–82.

    Article  PubMed  Google Scholar 

  138. Dejmek A, Naucler P, Smedjeback A, Kato H, Maeda M, Yashima K, Maeda J, Hirano T. Napsin A (TA02) is a useful alternative to thyroid transcription factor-1 (TTF-1) for the identification of pulmonary adenocarcinoma cells in pleural effusions. Diagn Cytopathol. 2007;35(8):493–7.

    Article  PubMed  Google Scholar 

  139. Flores-Staino C, Darai-Ramqvist E, Dobra K, Hjerpe A. Adaptation of a commercial fluorescent in situ hybridization test to the diagnosis of malignant cells in effusions. Lung Cancer. 2010;68(1):39–43.

    Article  PubMed  Google Scholar 

  140. Fiegl M, Massoner A, Haun M, Sturm W, Kaufmann H, Hack R, Krugmann J, Fritzer-Szekeres M, Grunewald K, Gastl G. Sensitive detection of tumour cells in effusions by combining cytology and fluorescence in situ hybridisation (FISH). Br J Cancer. 2004;91(3):558–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Voss JS, Kipp BR, Halling KC, Henry MR, Jett JR, Clayton AC, Rickman OB. Fluorescence in situ hybridization testing algorithm improves lung cancer detection in bronchial brushing specimens. Am J Respir Crit Care Med. 2010;181(5):478–85.

    Article  PubMed  Google Scholar 

  142. Akamatsu H, Koh Y, Kenmotsu H, Naito T, Serizawa M, Kimura M, Mori K, Imai H, Ono A, Shukuya T, et al. Multiplexed molecular profiling of lung cancer using pleural effusion. J Thorac Oncol. 2014;9(7):1048–52.

    Article  PubMed  CAS  Google Scholar 

  143. Kruglyak KM, Lin E, Ong FS. Next-generation sequencing and applications to the diagnosis and treatment of lung cancer. Adv Exp Med Biol. 2016;890:123–36.

    Article  PubMed  Google Scholar 

  144. Zugazagoitia J, Rueda D, Carrizo N, Enguita AB, Gomez-Sanchez D, Diaz-Serrano A, Jimenez E, Merida A, Calero R, Lujan R et al. Prospective clinical integration of an amplicon-based next-generation sequencing method to select advanced non-small-cell lung cancer patients for genotype-tailored treatments. Clin Lung Cancer. 2017.

    Google Scholar 

  145. Antony VB. Pathogenesis of malignant pleural effusions and talc pleurodesis. Pneumologie. 1999;53(10):493–8.

    Article  PubMed  CAS  Google Scholar 

  146. Nasreen N, Mohammed KA, Brown S, Su Y, Sriram PS, Moudgil B, Loddenkemper R, Antony VB. Talc mediates angiostasis in malignant pleural effusions via endostatin induction. Eur Respir J. 2007;29(4):761–9.

    Article  PubMed  CAS  Google Scholar 

  147. Grilli R, Oxman AD, Julian JA. Chemotherapy for advanced non-small-cell lung cancer: how much benefit is enough? J Clin Oncol. 1993;11(10):1866–72.

    Article  PubMed  CAS  Google Scholar 

  148. Souquet PJ, Chauvin F, Boissel JP, Cellerino R, Cormier Y, Ganz PA, Kaasa S, Pater JL, Quoix E, Rapp E, et al. Polychemotherapy in advanced non small cell lung cancer: a meta-analysis. Lancet. 1993;342(8862):19–21.

    Article  PubMed  CAS  Google Scholar 

  149. Carbone DP, Minna JD. Chemotherapy for non-small cell lung cancer. BMJ. 1995;311(7010):889–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. D’Addario G, Pintilie M, Leighl NB, Feld R, Cerny T, Shepherd FA. Platinum-based versus non-platinum-based chemotherapy in advanced non-small-cell lung cancer: a meta-analysis of the published literature. J Clin Oncol. 2005;23(13):2926–36.

    Article  PubMed  CAS  Google Scholar 

  151. Klastersky J, Sculier JP, Lacroix H, Dabouis G, Bureau G, Libert P, Richez M, Ravez P, Vandermoten G, Thiriaux J, et al. A randomized study comparing cisplatin or carboplatin with etoposide in patients with advanced non-small-cell lung cancer: European Organization for Research and Treatment of Cancer Protocol 07861. J Clin Oncol. 1990;8(9):1556–62.

    Article  PubMed  CAS  Google Scholar 

  152. Kroep JR, Giaccone G, Voorn DA, Smit EF, Beijnen JH, Rosing H, van Moorsel CJ, van Groeningen CJ, Postmus PE, Pinedo HM, et al. Gemcitabine and paclitaxel: pharmacokinetic and pharmacodynamic interactions in patients with non-small-cell lung cancer. J Clin Oncol. 1999;17(7):2190–7.

    Article  PubMed  CAS  Google Scholar 

  153. Mori K, Kobayashi H, Kamiyama Y, Kano Y, Kodama T. A phase II trial of weekly chemotherapy with paclitaxel plus gemcitabine as a first-line treatment in advanced non-small-cell lung cancer. Cancer Chemother Pharmacol. 2009;64(1):73–8.

    Article  PubMed  CAS  Google Scholar 

  154. Li C, Sun Y, Pan Y, Wang Q, Yang S, Chen H. Gemcitabine plus paclitaxel versus carboplatin plus either gemcitabine or paclitaxel in advanced non-small-cell lung cancer: a literature-based meta-analysis. Lung. 2010;188(5):359–64.

    Article  PubMed  CAS  Google Scholar 

  155. Azzoli CG, Giaccone G, Temin S. American Society of Clinical Oncology Clinical Practice Guideline Update on chemotherapy for Stage IV non-small-cell lung cancer. J Oncol Pract. 2010;6(1):39–43.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Davies AM, Lara PN, Lau DH, Gandara DR. Treatment of extensive small cell lung cancer. Hematol Oncol Clin North Am. 2004;18(2):373–85.

    Article  PubMed  Google Scholar 

  157. Socinski MA, Weissman C, Hart LL, Beck JT, Choksi JK, Hanson JP, Prager D, Monberg MJ, Ye Z, Obasaju CK. Randomized phase II trial of pemetrexed combined with either cisplatin or carboplatin in untreated extensive-stage small-cell lung cancer. J Clin Oncol. 2006;24(30):4840–7.

    Article  PubMed  CAS  Google Scholar 

  158. Chiappori AA, Rocha-Lima CM. New agents in the treatment of small-cell lung cancer: focus on gemcitabine. Clin Lung Cancer. 2003;4(Suppl 2):S56–63.

    Article  PubMed  Google Scholar 

  159. McDermott U, Settleman J. Personalized cancer therapy with selective kinase inhibitors: an emerging paradigm in medical oncology. J Clin Oncol. 2009;27(33):5650–9.

    Article  PubMed  CAS  Google Scholar 

  160. Besse B, Ropert S, Soria JC. Targeted therapies in lung cancer. Ann Oncol. 2007;18(Suppl 9):ix135–42.

    PubMed  Google Scholar 

  161. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med. 2004;350(21):2129–39.

    Article  PubMed  CAS  Google Scholar 

  162. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science. 2004;304(5676):1497–500.

    Article  PubMed  CAS  Google Scholar 

  163. Pao W, Miller V, Zakowski M, Doherty J, Politi K, Sarkaria I, Singh B, Heelan R, Rusch V, Fulton L, et al. EGF receptor gene mutations are common in lung cancers from “never smokers” and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci U S A. 2004;101(36):13306–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Pao W, Miller VA, Kris MG. ‘Targeting’ the epidermal growth factor receptor tyrosine kinase with gefitinib (Iressa) in non-small cell lung cancer (NSCLC). Semin Cancer Biol. 2004;14(1):33–40.

    Article  PubMed  CAS  Google Scholar 

  165. Janne PA. Challenges of detecting EGFR T790M in gefitinib/erlotinib-resistant tumours. Lung Cancer. 2008;60(Suppl 2):S3–9.

    Article  PubMed  Google Scholar 

  166. Jin Y, Shao Y, Shi X, Lou G, Zhang Y, Wu X, Tong X, Yu X. Mutational profiling of non-small-cell lung cancer patients resistant to first-generation EGFR tyrosine kinase inhibitors using next generation sequencing. Oncotarget. 2016;7(38):61755–63.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Gerber DE, Minna JD. ALK inhibition for non-small cell lung cancer: from discovery to therapy in record time. Cancer Cell. 2010;18(6):548–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Gandini S, Massi D, Mandala M. PD-L1 expression in cancer patients receiving anti PD-1/PD-L1 antibodies: a systematic review and meta-analysis. Crit Rev Oncol/Hematol. 2016;100:88–98.

    Article  Google Scholar 

  169. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, Lee W, Yuan J, Wong P, Ho TS, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348(6230):124–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, Skora AD, Luber BS, Azad NS, Laheru D, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  171. Grigg C, Rizvi NA. PD-L1 biomarker testing for non-small cell lung cancer: truth or fiction? J Immunother Cancer. 2016;4:48.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Subramanian J, Morgensztern D, Govindan R. Vascular endothelial growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. Clin Lung Cancer. 2010;11(5):311–9.

    Article  PubMed  CAS  Google Scholar 

  173. Kennedy B, Gargoum F, Bystricky B, Curran DR, O'Connor TM. Novel agents in the management of lung cancer. Curr Med Chem. 2010;17(35):4291–325.

    Article  PubMed  CAS  Google Scholar 

  174. Psallidas I, Karabela SP, Moschos C, Sherrill TP, Kollintza A, Magkouta S, Theodoropoulou P, Roussos C, Blackwell TS, Kalomenidis I, et al. Specific effects of bortezomib against experimental malignant pleural effusion: a preclinical study. Mol Cancer. 2010;9:56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Russo A, Bronte G, Fulfaro F, Cicero G, Adamo V, Gebbia N, Rizzo S. Bortezomib: a new pro-apoptotic agent in cancer treatment. Curr Cancer Drug Targets. 2010;10(1):55–67.

    Article  PubMed  CAS  Google Scholar 

  176. Langer CJ, Besse B, Gualberto A, Brambilla E, Soria JC. The evolving role of histology in the management of advanced non-small-cell lung cancer. J Clin Oncol. 2010;28(36):5311–20.

    Article  PubMed  Google Scholar 

  177. Schrag D, Garewal HS, Burstein HJ, Samson DJ, Von Hoff DD, Somerfield MR. American Society of Clinical Oncology Technology Assessment: chemotherapy sensitivity and resistance assays. J Clin Oncol. 2004;22(17):3631–8.

    Article  PubMed  CAS  Google Scholar 

  178. Samson DJ, Seidenfeld J, Ziegler K, Aronson N. Chemotherapy sensitivity and resistance assays: a systematic review. J Clin Oncol. 2004;22(17):3618–30.

    Article  PubMed  CAS  Google Scholar 

  179. Roscilli G, De Vitis C, Ferrara FF, Noto A, Cherubini E, Ricci A, Mariotta S, Giarnieri E, Giovagnoli MR, Torrisi MR, et al. Human lung adenocarcinoma cell cultures derived from malignant pleural effusions as model system to predict patients chemosensitivity. J Transl Med. 2016;14:61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Otvos R, Szulkin A, Hillerdal CO, Celep A, Yousef-Fadhel E, Skribek H, Hjerpe A, Szekely L, Dobra K. Drug sensitivity profiling and molecular characteristics of cells from pleural effusions of patients with lung adenocarcinoma. Genes Cancer. 2015;6(3-4):119–28.

    PubMed  PubMed Central  Google Scholar 

  181. Gulyas M, Kaposi AD, Elek G, Szollar LG, Hjerpe A. Value of carcinoembryonic antigen (CEA) and cholesterol assays of ascitic fluid in cases of inconclusive cytology. J Clin Pathol. 2001;54(11):831–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Radjenovic-Petkovic T, Pejcic T, Nastasijevic-Borovac D, Rancic M, Radojkovic D, Radojkovic M, Djordjevic I. Diagnostic value of CEA in pleural fluid for differential diagnosis of benign and malign pleural effusion. Med Arh. 2009;63(3):141–2.

    PubMed  Google Scholar 

  183. Huang WW, Tsao SM, Lai CL, Su CC, Tseng CE. Diagnostic value of Her-2/neu, Cyfra 21-1, and carcinoembryonic antigen levels in malignant pleural effusions of lung adenocarcinoma. Pathology. 2010;42(3):224–8.

    Article  PubMed  Google Scholar 

  184. Toda K, Takahashi J, Tabuchi Y, Koizumi T, Nishimura R, Nishio W, Tsubota N, Matsuoka H. Clinical usefulness of CEA-mRNA determination in minor effusion. J Exp Clin Cancer Res. 2005;24(3):423–9.

    PubMed  CAS  Google Scholar 

  185. Hung TL, Chen FF, Liu JM, Lai WW, Hsiao AL, Huang WT, Chen HH. Su WC: Clinical evaluation of HER-2/neu protein in malignant pleural effusion-associated lung adenocarcinoma and as a tumor marker in pleural effusion diagnosis. Clin Cancer Res. 2003;9(7):2605–12.

    PubMed  CAS  Google Scholar 

  186. Szturmowicz M, Tomkowski W, Fijalkowska A, Kupis W, Cieslik A, Demkow U, Langfort R, Wiechecka A, Orlowski T, Torbicki A. Diagnostic utility of CYFRA 21-1 and CEA assays in pericardial fluid for the recognition of neoplastic pericarditis. Int J Biol Markers. 2005;20(1):43–9.

    Article  PubMed  CAS  Google Scholar 

  187. Li CS, Cheng BC, Ge W, Gao JF. Clinical value of CYFRA21-1, NSE, CA15-3, CA19-9 and CA125 assay in the elderly patients with pleural effusions. Int J Clin Pract. 2007;61(3):444–8.

    Article  PubMed  CAS  Google Scholar 

  188. Hackbarth JS, Murata K, Reilly WM, Algeciras-Schimnich A. Performance of CEA and CA19-9 in identifying pleural effusions caused by specific malignancies. Clin Biochem. 2010;43(13-14):1051–5.

    Article  PubMed  CAS  Google Scholar 

  189. Kuralay F, Tokgoz Z, Comlekci A. Diagnostic usefulness of tumour marker levels in pleural effusions of malignant and benign origin. Clin Chim Acta. 2000;300(1-2):43–55.

    Article  PubMed  CAS  Google Scholar 

  190. Bielsa S, Esquerda A, Salud A, Montes A, Arellano E, Rodriguez-Panadero F, Porcel JM. High levels of tumor markers in pleural fluid correlate with poor survival in patients with adenocarcinomatous or squamous malignant effusions. Eur J Intern Med. 2009;20(4):383–6.

    Article  PubMed  CAS  Google Scholar 

  191. Fiorelli A, Vicidomini G, Di Domenico M, Napolitano F, Messina G, Morgillo F, Ciardiello F, Santini M. Vascular endothelial growth factor in pleural fluid for differential diagnosis of benign and malignant origin and its clinical applications. Interact Cardiovasc Thorac Surg. 2011;12(3):420–4.

    Article  PubMed  Google Scholar 

  192. Eagles G, Warn A, Ball RY, Baillie-Johnson H, Arakaki N, Daikuhara Y, Warn RM. Hepatocyte growth factor/scatter factor is present in most pleural effusion fluids from cancer patients. Br J Cancer. 1996;73(3):377–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Richman SD, Hutchins GG, Seymour MT, Quirke P. What can the molecular pathologist offer for optimal decision making? Ann Oncol. 2010;21(Suppl 7):vii123–9.

    PubMed  Google Scholar 

  194. Pao W, Chmielecki J. Rational, biologically based treatment of EGFR-mutant non-small-cell lung cancer. Nat Rev Cancer. 2010;10(11):760–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  195. Zhang X, Zhao Y, Wang M, Yap WS, Chang AY. Detection and comparison of epidermal growth factor receptor mutations in cells and fluid of malignant pleural effusion in non-small cell lung cancer. Lung Cancer. 2008;60(2):175–82.

    Article  PubMed  Google Scholar 

  196. Pan Q, Pao W, Ladanyi M. Rapid polymerase chain reaction-based detection of epidermal growth factor receptor gene mutations in lung adenocarcinomas. J Mol Diagn. 2005;7(3):396–403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  197. Asano H, Toyooka S, Tokumo M, Ichimura K, Aoe K, Ito S, Tsukuda K, Ouchida M, Aoe M, Katayama H, et al. Detection of EGFR gene mutation in lung cancer by mutant-enriched polymerase chain reaction assay. Clin Cancer Res. 2006;12(1):43–8.

    Article  PubMed  CAS  Google Scholar 

  198. Molina-Vila MA, Bertran-Alamillo J, Reguart N, Taron M, Castella E, Llatjos M, Costa C, Mayo C, Pradas A, Queralt C, et al. A sensitive method for detecting EGFR mutations in non-small cell lung cancer samples with few tumor cells. J Thorac Oncol. 2008;3(11):1224–35.

    Article  PubMed  Google Scholar 

  199. Miller VA, Riely GJ, Zakowski MF, Li AR, Patel JD, Heelan RT, Kris MG, Sandler AB, Carbone DP, Tsao A, et al. Molecular characteristics of bronchioloalveolar carcinoma and adenocarcinoma, bronchioloalveolar carcinoma subtype, predict response to erlotinib. J Clin Oncol. 2008;26(9):1472–8.

    Article  PubMed  CAS  Google Scholar 

  200. Brevet M, Arcila M, Ladanyi M. Assessment of EGFR mutation status in lung adenocarcinoma by immunohistochemistry using antibodies specific to the two major forms of mutant EGFR. J Mol Diagn. 2010;12(2):169–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Garcia J, Riely GJ, Nafa K, Ladanyi M. KRAS mutational testing in the selection of patients for EGFR-targeted therapies. Semin Diagn Pathol. 2008;25(4):288–94.

    Article  PubMed  Google Scholar 

  202. Pao W, Miller VA, Politi KA, Riely GJ, Somwar R, Zakowski MF, Kris MG, Varmus H. Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med. 2005;2(3):e73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Yun CH, Mengwasser KE, Toms AV, Woo MS, Greulich H, Wong KK, Meyerson M, Eck MJ. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci U S A. 2008;105(6):2070–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  204. Suda K, Onozato R, Yatabe Y, Mitsudomi T. EGFR T790M mutation: a double role in lung cancer cell survival? J Thorac Oncol. 2009;4(1):1–4.

    Article  PubMed  Google Scholar 

  205. Vakiani E, Solit DB. KRAS and BRAF: drug targets and predictive biomarkers. J Pathol. 2011;223(2):219–29.

    Article  PubMed  CAS  Google Scholar 

  206. Ceppi P, Monica V, Righi L, Papotti M, Scagliotti GV. Emerging role of thymidylate synthase for the pharmacogenomic selection of patients with thoracic cancer. Int J Clin Pharmacol Ther. 2010;48(7):481–2.

    Article  PubMed  CAS  Google Scholar 

  207. Bepler G, Sommers KE, Cantor A, Li X, Sharma A, Williams C, Chiappori A, Haura E, Antonia S, Tanvetyanon T, et al. Clinical efficacy and predictive molecular markers of neoadjuvant gemcitabine and pemetrexed in resectable non-small cell lung cancer. J Thorac Oncol. 2008;3(10):1112–8.

    Article  PubMed  PubMed Central  Google Scholar 

  208. Kamoshida S, Suzuki M, Shimomura R, Sakurai Y, Komori Y, Uyama I, Tsutsumi Y. Immunostaining of thymidylate synthase and p53 for predicting chemoresistance to S-1/cisplatin in gastric cancer. Br J Cancer. 2007;96(2):277–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Wang X, Zhao J, Yang L, Mao L, An T, Bai H, Wang S, Liu X, Feng G, Wang J. Positive expression of ERCC1 predicts a poorer platinum-based treatment outcome in Chinese patients with advanced non-small-cell lung cancer. Med Oncol. 2010;27(2):484–90.

    Article  PubMed  CAS  Google Scholar 

  210. Ikeda S, Takabe K, Suzuki K. Expression of ERCC1 and class IIIbeta tubulin for predicting effect of carboplatin/paclitaxel in patients with advanced inoperable non-small cell lung cancer. Pathol Int. 2009;59(12):863–7.

    Article  PubMed  CAS  Google Scholar 

  211. Cobo M, Isla D, Massuti B, Montes A, Sanchez JM, Provencio M, Vinolas N, Paz-Ares L, Lopez-Vivanco G, Munoz MA, et al. Customizing cisplatin based on quantitative excision repair cross-complementing 1 mRNA expression: a phase III trial in non-small-cell lung cancer. J Clin Oncol. 2007;25(19):2747–54.

    Article  PubMed  CAS  Google Scholar 

  212. Azuma K, Sasada T, Kawahara A, Hattori S, Kinoshita T, Takamori S, Ichiki M, Imamura Y, Ikeda J, Kage M, et al. Expression of ERCC1 and class III beta-tubulin in non-small cell lung cancer patients treated with a combination of cisplatin/docetaxel and concurrent thoracic irradiation. Cancer Chemother Pharmacol. 2009;64(3):565–73.

    Article  PubMed  CAS  Google Scholar 

  213. Seve P, Mackey J, Isaac S, Tredan O, Souquet PJ, Perol M, Lai R, Voloch A, Dumontet C. Class III beta-tubulin expression in tumor cells predicts response and outcome in patients with non-small cell lung cancer receiving paclitaxel. Mol Cancer Ther. 2005;4(12):2001–7.

    Article  PubMed  CAS  Google Scholar 

  214. Seve P, Isaac S, Tredan O, Souquet PJ, Pacheco Y, Perol M, Lafanechere L, Penet A, Peiller EL, Dumontet C. Expression of class III {beta}-tubulin is predictive of patient outcome in patients with non-small cell lung cancer receiving vinorelbine-based chemotherapy. Clin Cancer Res. 2005;11(15):5481–6.

    Article  PubMed  CAS  Google Scholar 

  215. Dumontet C, Isaac S, Souquet PJ, Bejui-Thivolet F, Pacheco Y, Peloux N, Frankfurter A, Luduena R, Perol M. Expression of class III beta tubulin in non-small cell lung cancer is correlated with resistance to taxane chemotherapy. Bull Cancer. 2005;92(2):E25–30.

    PubMed  Google Scholar 

  216. Seruga B, Hertz PC, Le LW, Tannock IF. Global drug development in cancer: a cross-sectional study of clinical trial registries. Ann Oncol. 2010;21(4):895–900.

    Article  PubMed  CAS  Google Scholar 

  217. Subramanian J, Madadi AR, Dandona M, Williams K, Morgensztern D, Govindan R. Review of ongoing clinical trials in non-small cell lung cancer: a status report for 2009 from the ClinicalTrials.gov website. J Thorac Oncol. 2010;5(8):1116–9.

    Article  PubMed  Google Scholar 

  218. Bedrossian CW. Diagnostic problems in serous effusions. Diagn Cytopathol. 1998;19(2):131–7.

    Article  PubMed  CAS  Google Scholar 

  219. Lynch TJ Jr. Management of malignant pleural effusions. Chest. 1993;103(4 Suppl):385S–9S.

    Article  PubMed  Google Scholar 

  220. van den Toorn LM, Schaap E, Surmont VF, Pouw EM, van der Rijt KC, van Klaveren RJ. Management of recurrent malignant pleural effusions with a chronic indwelling pleural catheter. Lung Cancer. 2005;50(1):123–7.

    Article  PubMed  Google Scholar 

  221. Antunes G, Neville E, Duffy J, Ali N. BTS guidelines for the management of malignant pleural effusions. Thorax. 2003;58(Suppl 2):ii29–38.

    Article  PubMed  PubMed Central  Google Scholar 

  222. Grossi F, Pennucci MC, Tixi L, Cafferata MA, Ardizzoni A. Management of malignant pleural effusions. Drugs. 1998;55(1):47–58.

    Article  PubMed  CAS  Google Scholar 

  223. Mascaux C, Iannino N, Martin B, Paesmans M, Berghmans T, Dusart M, Haller A, Lothaire P, Meert AP, Noel S, et al. The role of RAS oncogene in survival of patients with lung cancer: a systematic review of the literature with meta-analysis. Br J Cancer. 2005;92(1):131–9.

    Article  PubMed  CAS  Google Scholar 

  224. Kosaka T, Yatabe Y, Onozato R, Kuwano H, Mitsudomi T. Prognostic implication of EGFR, KRAS, and TP53 gene mutations in a large cohort of Japanese patients with surgically treated lung adenocarcinoma. J Thorac Oncol. 2009;4(1):22–9.

    Article  PubMed  Google Scholar 

  225. Subramanian J, Simon R. Gene expression-based prognostic signatures in lung cancer: ready for clinical use? J Natl Cancer Inst. 2010;102(7):464–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  226. Shah L, Walter KL, Borczuk AC, Kawut SM, Sonett JR, Gorenstein LA, Ginsburg ME, Steinglass KM, Powell CA. Expression of syndecan-1 and expression of epidermal growth factor receptor are associated with survival in patients with nonsmall cell lung carcinoma. Cancer. 2004;101(7):1632–8.

    Article  PubMed  CAS  Google Scholar 

  227. Lan CC, Wu YK, Lee CH, Huang YC, Huang CY, Tsai YH, Huang SF, Tsao TC. Increased survivin mRNA in malignant pleural effusion is significantly correlated with survival. Jpn J Clin Oncol. 2010;40(3):234–40.

    Article  PubMed  Google Scholar 

  228. Wu YK, Chen KT, Kuo YB, Huang YS, Chan EC. Quantitative detection of survivin in malignant pleural effusion for the diagnosis and prognosis of lung cancer. Cancer Lett. 2009;273(2):331–5.

    Article  PubMed  CAS  Google Scholar 

  229. Hsu IL, Su WC, Yan JJ, Chang JM, Lai WW. Angiogenetic biomarkers in non-small cell lung cancer with malignant pleural effusion: correlations with patient survival and pleural effusion control. Lung Cancer. 2009;65(3):371–6.

    Article  PubMed  Google Scholar 

  230. Bielsa S, Salud A, Martinez M, Esquerda A, Martin A, Rodriguez-Panadero F, Porcel JM. Prognostic significance of pleural fluid data in patients with malignant effusion. Eur J Intern Med. 2008;19(5):334–9.

    Article  PubMed  Google Scholar 

  231. Zendehrokh N, Franzen L, Dejmek A. Weak telomerase activity in malignant cells in metastatic serous effusions correlation to short survival time. Acta Cytol. 2007;51(3):412–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katalin Dobra M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dobra, K., Hjerpe, A. (2018). Lung Cancer. In: Davidson, B., Firat, P., Michael, C. (eds) Serous Effusions. Springer, Cham. https://doi.org/10.1007/978-3-319-76478-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76478-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76477-1

  • Online ISBN: 978-3-319-76478-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics