Skip to main content

Malignant Mesothelioma

  • Chapter
  • First Online:
Book cover Serous Effusions

Abstract

Malignant mesothelioma, the primary tumor of the serosal cavities, is in most cases the fearful consequence of exposure to fibrous minerals such as asbestos and erionite. The diagnosis was previously considered to be a difficult one that required access to biopsy material. The development of ancillary techniques such as immunocytochemistry and fluorescence in situ hybridization has changed this, and guidelines for obtaining a specific diagnosis based on effusion cytology have been recently published. Since the effusion often is the first available diagnostic material, the diagnosis is also obtained earlier in this way, improving patient survival and the chance for therapeutic intervention. The chapter describes the development of the tumor and its molecular background. This is characterized by frequent losses of the suppressor genes NF-2 and BAP-1 and homozygous deletion of p16, while no specific driver mutation has been so far identified. Despite the lack of actionable driver mutations, extensive genome-wide molecular screening combined with chemosensitivity testing of cells derived from pleural effusions has the potential to improve the basis for rational selection of personalized treatment options in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wagner JC, Sleggs CA, Marchand P. Diffuse pleural mesothelioma and asbestos exposure in the North Western Cape Province. Br J Ind Med. 1960;17:260–71.

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Wagner JC, Skidmore JW, Hill RJ, Griffiths DM. Erionite exposure and mesotheliomas in rats. Br J Cancer. 1985;51(5):727–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Carbone M, Ly BH, Dodson RF, Pagano I, Morris PT, Dogan UA, Gazdar AF, Pass HI, Yang H. Malignant mesothelioma: facts, myths, and hypotheses. J Cell Physiol. 2012;227(1):44–58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Faig J, Howard S, Levine EA, Casselman G, Hesdorffer M, Ohar JA. Changing pattern in malignant mesothelioma survival. Transl Oncol. 2015;8(1):35–9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Ai J, Stevenson JP. Current issues in malignant pleural mesothelioma evaluation and management. Oncologist. 2014;19(9):975–84.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Mutsaers SE. Mesothelial cells: their structure, function and role in serosal repair. Respirology. 2002;7(3):171–91.

    Article  PubMed  Google Scholar 

  7. Mutsaers SE. The mesothelial cell. Int J Biochem Cell Biol. 2004;36(1):9–16.

    Article  PubMed  CAS  Google Scholar 

  8. Mutsaers SE, Kalomenidis I, Wilson NA, Lee YC. Growth factors in pleural fibrosis. Curr Opin Pulm Med. 2006;12(4):251–8.

    Article  PubMed  CAS  Google Scholar 

  9. Mutsaers SE, Di Paolo N. Future directions in mesothelial transplantation research. Int J Artif Organs. 2007;30(6):557–61.

    Article  PubMed  CAS  Google Scholar 

  10. Dobra K, Andang M, Syrokou A, Karamanos NK, Hjerpe A. Differentiation of mesothelioma cells is influenced by the expression of proteoglycans. Exp Cell Res. 2000;258(1):12–22.

    Article  PubMed  CAS  Google Scholar 

  11. Bolen JW, Hammar SP, McNutt MA. Reactive and neoplastic serosal tissue. A light-microscopic, ultrastructural, and immunocytochemical study. Am J Surg Pathol. 1986;10(1):34–47.

    Article  PubMed  CAS  Google Scholar 

  12. Whitaker D, Papadimitriou J. Mesothelial healing: morphological and kinetic investigations. J Pathol. 1985;145(2):159–75.

    Article  PubMed  CAS  Google Scholar 

  13. Foley-Comer AJ, Herrick SE, Al-Mishlab T, Prele CM, Laurent GJ, Mutsaers SE. Evidence for incorporation of free-floating mesothelial cells as a mechanism of serosal healing. J Cell Sci. 2002;115(Pt 7):1383–9.

    PubMed  CAS  Google Scholar 

  14. Warn R, Harvey P, Warn A, Foley-Comer A, Heldin P, Versnel M, Arakaki N, Daikuhara Y, Laurent GJ, Herrick SE, et al. HGF/SF induces mesothelial cell migration and proliferation by autocrine and paracrine pathways. Exp Cell Res. 2001;267(2):258–66.

    Article  PubMed  CAS  Google Scholar 

  15. Herrick SE, Mutsaers SE. Mesothelial progenitor cells and their potential in tissue engineering. Int J Biochem Cell Biol. 2004;36(4):621–42.

    Article  PubMed  CAS  Google Scholar 

  16. Chua F, Dunsmore SE, Clingen PH, Mutsaers SE, Shapiro SD, Segal AW, Roes J, Laurent GJ. Mice lacking neutrophil elastase are resistant to bleomycin-induced pulmonary fibrosis. Am J Pathol. 2007;170(1):65–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Herrick SE, Mutsaers SE. The potential of mesothelial cells in tissue engineering and regenerative medicine applications. Int J Artif Organs. 2007;30(6):527–40.

    Article  PubMed  CAS  Google Scholar 

  18. Lansley SM, Searles RG, Hoi A, Thomas C, Moneta H, Herrick SE, Thompson PJ, Newman M, Sterrett GF, Prele CM, et al. Mesothelial cell differentiation into osteoblast- and adipocyte-like cells. J Cell Mol Med. 2011;15(10):2095–105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Fassina A, Cappellesso R, Guzzardo V, Dalla Via L, Piccolo S, Ventura L, Fassan M. Epithelial-mesenchymal transition in malignant mesothelioma. Mod Pathol. 2012;25(1):86–99.

    Article  PubMed  CAS  Google Scholar 

  20. Klominek J, Robert KH, Hjerpe A, Wickstrom B, Gahrton G. Serum-dependent growth patterns of two, newly established human mesothelioma cell lines. Cancer Res. 1989;49(21):6118–22.

    PubMed  CAS  Google Scholar 

  21. Craighead JE, Mossman BT. The pathogenesis of asbestos-associated diseases. N Engl J Med. 1982;306(24):1446–55.

    Article  PubMed  CAS  Google Scholar 

  22. Sebastien P, Gaudichet A, Bignon J, Baris YI. Zeolite bodies in human lungs from Turkey. Lab Invest. 1981;44(5):420–5.

    PubMed  CAS  Google Scholar 

  23. Carbone M, Emri S, Dogan AU, Steele I, Tuncer M, Pass HI, Baris YI. A mesothelioma epidemic in Cappadocia: scientific developments and unexpected social outcomes. Nat Rev Cancer. 2007;7(2):147–54.

    Article  PubMed  CAS  Google Scholar 

  24. Baumann F, Rougier Y, Ambrosi JP, Robineau BP. Pleural mesothelioma in New Caledonia: an acute environmental concern. Cancer Detect Prev. 2007;31(1):70–6.

    Article  PubMed  Google Scholar 

  25. Metintas M, Ozdemir N, Hillerdal G, Ucgun I, Metintas S, Baykul C, Elbek O, Mutlu S, Kolsuz M. Environmental asbestos exposure and malignant pleural mesothelioma. Respir Med. 1999;93(5):349–55.

    Article  PubMed  CAS  Google Scholar 

  26. Hillerdal G. Mesothelioma: cases associated with non-occupational and low dose exposures. Occup Environ Med. 1999;56(8):505–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Maher B. Epidemiology: fear in the dust. Nature. 2010;468(7326):884–5.

    Article  PubMed  CAS  Google Scholar 

  28. Baris YI, Grandjean P. Prospective study of mesothelioma mortality in Turkish villages with exposure to fibrous zeolite. J Natl Cancer Inst. 2006;98(6):414–7.

    Article  PubMed  CAS  Google Scholar 

  29. McDonald JC. Epidemiology of malignant mesothelioma—an outline. Ann Occup Hyg. 2010;54(8):851–7.

    PubMed  Google Scholar 

  30. Lotti M, Bergamo L, Murer B. Occupational toxicology of asbestos-related malignancies. Clin Toxicol (Phila). 2010;48(6):485–96.

    Article  Google Scholar 

  31. Lechner JF, Tokiwa T, LaVeck M, Benedict WF, Banks-Schlegel S, Yeager H Jr, Banerjee A, Harris CC. Asbestos-associated chromosomal changes in human mesothelial cells. Proc Natl Acad Sci U S A. 1985;82(11):3884–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Ault JG, Cole RW, Jensen CG, Jensen LC, Bachert LA, Rieder CL. Behavior of crocidolite asbestos during mitosis in living vertebrate lung epithelial cells. Cancer Res. 1995;55(4):792–8.

    PubMed  CAS  Google Scholar 

  33. Hesterberg TW, Barrett JC. Induction by asbestos fibers of anaphase abnormalities: mechanism for aneuploidy induction and possibly carcinogenesis. Carcinogenesis. 1985;6(3):473–5.

    Article  PubMed  CAS  Google Scholar 

  34. Fung H, Kow YW, Van Houten B, Taatjes DJ, Hatahet Z, Janssen YM, Vacek P, Faux SP, Mossman BT. Asbestos increases mammalian AP-endonuclease gene expression, protein levels, and enzyme activity in mesothelial cells. Cancer Res. 1998;58(2):189–94.

    PubMed  CAS  Google Scholar 

  35. Sekido Y. Molecular pathogenesis of malignant mesothelioma. Carcinogenesis. 2013;34(7):1413–9.

    Article  PubMed  CAS  Google Scholar 

  36. Chew SH, Toyokuni S. Malignant mesothelioma as an oxidative stress-induced cancer: an update. Free Radic Biol Med. 2015;86:166–78.

    Article  PubMed  CAS  Google Scholar 

  37. Francis RJ, Segard T, Morandeau L, Lee YC, Millward MJ, Segal A, Nowak AK. Characterization of hypoxia in malignant pleural mesothelioma with FMISO PET-CT. Lung Cancer. 2015;90(1):55–60.

    Article  PubMed  Google Scholar 

  38. Bristow RG, Hill RP. Hypoxia and metabolism. Hypoxia, DNA repair and genetic instability. Nat Rev Cancer. 2008;8(3):180–92.

    Article  PubMed  CAS  Google Scholar 

  39. Nabavi N, Bennewith KL, Churg A, Wang Y, Collins CC, Mutti L. Switching off malignant mesothelioma: exploiting the hypoxic microenvironment. Genes Cancer. 2016;7(11-12):340–54.

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Lechner JF, Tesfaigzi J, Gerwin BI. Oncogenes and tumor-suppressor genes in mesothelioma—a synopsis. Environ Health Perspect. 1997;105(Suppl 5):1061–7.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lindholm PM, Salmenkivi K, Vauhkonen H, Nicholson AG, Anttila S, Kinnula VL, Knuutila S. Gene copy number analysis in malignant pleural mesothelioma using oligonucleotide array CGH. Cytogenet Genome Res. 2007;119(1-2):46–52.

    Article  PubMed  CAS  Google Scholar 

  42. Musti M, Kettunen E, Dragonieri S, Lindholm P, Cavone D, Serio G, Knuutila S. Cytogenetic and molecular genetic changes in malignant mesothelioma. Cancer Genet Cytogenet. 2006;170(1):9–15.

    Article  PubMed  CAS  Google Scholar 

  43. Gibas Z, Li FP, Antman KH, Bernal S, Stahel R, Sandberg AA. Chromosome changes in malignant mesothelioma. Cancer Genet Cytogenet. 1986;20(3-4):191–201.

    Article  PubMed  CAS  Google Scholar 

  44. Popescu NC, Chahinian AP, DiPaolo JA. Nonrandom chromosome alterations in human malignant mesothelioma. Cancer Res. 1988;48(1):142–7.

    PubMed  CAS  Google Scholar 

  45. Tiainen M, Tammilehto L, Mattson K, Knuutila S. Nonrandom chromosomal abnormalities in malignant pleural mesothelioma. Cancer Genet Cytogenet. 1988;33(2):251–74.

    Article  PubMed  CAS  Google Scholar 

  46. Flejter WL, Li FP, Antman KH, Testa JR. Recurring loss involving chromosomes 1, 3, and 22 in malignant mesothelioma: possible sites of tumor suppressor genes. Genes Chromosomes Cancer. 1989;1(2):148–54.

    Article  PubMed  CAS  Google Scholar 

  47. Hagemeijer A, Versnel MA, Van Drunen E, Moret M, Bouts MJ, van der Kwast TH, Hoogsteden HC. Cytogenetic analysis of malignant mesothelioma. Cancer Genet Cytogenet. 1990;47(1):1–28.

    Article  PubMed  CAS  Google Scholar 

  48. Taguchi T, Jhanwar SC, Siegfried JM, Keller SM, Testa JR. Recurrent deletions of specific chromosomal sites in 1p, 3p, 6q, and 9p in human malignant mesothelioma. Cancer Res. 1993;53(18):4349–55.

    PubMed  CAS  Google Scholar 

  49. Kamb A, Shattuck-Eidens D, Eeles R, Liu Q, Gruis NA, Ding W, Hussey C, Tran T, Miki Y, Weaver-Feldhaus J, et al. Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus. Nat Genet. 1994;8(1):23–6.

    Article  PubMed  CAS  Google Scholar 

  50. Cheng JQ, Jhanwar SC, Klein WM, Bell DW, Lee WC, Altomare DA, Nobori T, Olopade OI, Buckler AJ, Testa JR. p16 alterations and deletion mapping of 9p21-p22 in malignant mesothelioma. Cancer Res. 1994;54(21):5547–51.

    PubMed  CAS  Google Scholar 

  51. Nobori T, Miura K, Wu DJ, Lois A, Takabayashi K, Carson DA. Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature. 1994;368(6473):753–6.

    Article  PubMed  CAS  Google Scholar 

  52. Kratzke RA, Otterson GA, Lincoln CE, Ewing S, Oie H, Geradts J, Kaye FJ. Immunohistochemical analysis of the p16INK4 cyclin-dependent kinase inhibitor in malignant mesothelioma. J Natl Cancer Inst. 1995;87(24):1870–5.

    Article  PubMed  CAS  Google Scholar 

  53. De Rienzo A, Archer MA, Yeap BY, Dao N, Sciaranghella D, Sideris AC, Zheng Y, Holman AG, Wang YE, Dal Cin PS, et al. Gender-specific molecular and clinical features underlie malignant pleural mesothelioma. Cancer Res. 2016;76(2):319–28.

    Article  PubMed  CAS  Google Scholar 

  54. Illei PB, Ladanyi M, Rusch VW, Zakowski MF. The use of CDKN2A deletion as a diagnostic marker for malignant mesothelioma in body cavity effusions. Cancer. 2003;99(1):51–6.

    Article  PubMed  CAS  Google Scholar 

  55. Ladanyi M. Implications of P16/CDKN2A deletion in pleural mesotheliomas. Lung Cancer. 2005;49(Suppl 1):S95–8.

    Article  PubMed  Google Scholar 

  56. Savic S, Franco N, Grilli B, Barascud Ade V, Herzog M, Bode B, Loosli H, Spieler P, Schonegg R, Zlobec I, et al. Fluorescence in situ hybridization in the definitive diagnosis of malignant mesothelioma in effusion cytology. Chest. 2010;138(1):137–44.

    Article  PubMed  CAS  Google Scholar 

  57. Lopez-Rios F, Chuai S, Flores R, Shimizu S, Ohno T, Wakahara K, Illei PB, Hussain S, Krug L, Zakowski MF, et al. Global gene expression profiling of pleural mesotheliomas: overexpression of aurora kinases and P16/CDKN2A deletion as prognostic factors and critical evaluation of microarray-based prognostic prediction. Cancer Res. 2006;66(6):2970–9.

    Article  PubMed  CAS  Google Scholar 

  58. Testa JR, Cheung M, Pei J, Below JE, Tan Y, Sementino E, Cox NJ, Dogan AU, Pass HI, Trusa S, et al. Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet. 2011;43(10):1022–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Carbone M, Yang H, Pass HI, Krausz T, Testa JR, Gaudino G. BAP1 and cancer. Nat Rev Cancer. 2013;13(3):153–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Cheung M, Talarchek J, Schindeler K, Saraiva E, Penney LS, Ludman M, Testa JR. Further evidence for germline BAP1 mutations predisposing to melanoma and malignant mesothelioma. Cancer Genet. 2013;206(5):206–10.

    Article  PubMed  CAS  Google Scholar 

  61. Wang A, Papneja A, Hyrcza M, Al-Habeeb A, Ghazarian D. Gene of the month: BAP1. J Clin Pathol. 2016;69(9):750–3.

    Article  PubMed  CAS  Google Scholar 

  62. Bhattacharya S, Hanpude P, Maiti TK. Cancer associated missense mutations in BAP1 catalytic domain induce amyloidogenic aggregation: a new insight in enzymatic inactivation. Sci Rep. 2015;5:18462.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Dawson A, Gibbs A, Browne K, Pooley F, Griffiths M. Familial mesothelioma. Details of 17 cases with histopathologic findings and mineral analysis. Cancer. 1992;70(5):1183–7.

    Article  PubMed  CAS  Google Scholar 

  64. Attanoos RL, Gibbs AR. Pathology of malignant mesothelioma. Histopathology. 1997;30(5):403–18.

    Article  PubMed  CAS  Google Scholar 

  65. Ascoli V, Aalto Y, Carnovale-Scalzo C, Nardi F, Falzetti D, Mecucci C, Knuutila S. DNA copy number changes in familial malignant mesothelioma. Cancer Genet Cytogenet. 2001;127(1):80–2.

    Article  PubMed  CAS  Google Scholar 

  66. Roushdy-Hammady I, Siegel J, Emri S, Testa JR, Carbone M. Genetic-susceptibility factor and malignant mesothelioma in the Cappadocian region of Turkey. Lancet. 2001;357(9254):444–5.

    Article  PubMed  CAS  Google Scholar 

  67. Pilarski R, Rai K, Cebulla C, Abdel-Rahman M. BAP1 tumor predisposition syndrome. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, Bird TD, Ledbetter N, Mefford HC, Smith RJH, et al., editors. GeneReviews(R). Seattle, WA; 1993.

    Google Scholar 

  68. Cheung M, Testa JR. BAP1, a tumor suppressor gene driving malignant mesothelioma. Transl Lung Cancer Res. 2017;6(3):270–8.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Nasu M, Emi M, Pastorino S, Tanji M, Powers A, Luk H, Baumann F, Zhang YA, Gazdar A, Kanodia S, et al. High incidence of somatic BAP1 alterations in sporadic malignant mesothelioma. J Thorac Oncol. 2015;10(4):565–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Farzin M, Toon CW, Clarkson A, Sioson L, Watson N, Andrici J, Gill AJ. Loss of expression of BAP1 predicts longer survival in mesothelioma. Pathology. 2015;47(4):302–7.

    Article  PubMed  CAS  Google Scholar 

  71. Rai K, Pilarski R, Cebulla CM, Abdel-Rahman MH. Comprehensive review of BAP1 tumor predisposition syndrome with report of two new cases. Clin Genet. 2016;89(3):285–94.

    Article  PubMed  CAS  Google Scholar 

  72. Ohar JA, Cheung M, Talarchek J, Howard SE, Howard TD, Hesdorffer M, Peng H, Rauscher FJ, Testa JR. Germline BAP1 mutational landscape of asbestos-exposed malignant mesothelioma patients with family history of cancer. Cancer Res. 2016;76(2):206–15.

    Article  PubMed  CAS  Google Scholar 

  73. Abdel-Rahman MH, Rai K, Pilarski R, Davidorf FH, Cebulla CM. Germline BAP1 mutations misreported as somatic based on tumor-only testing. Fam Cancer. 2016;15(2):327–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Betti M, Casalone E, Ferrante D, Aspesi A, Morleo G, Biasi A, Sculco M, Mancuso G, Guarrera S, Righi L et al. Germline mutations in DNA repair genes predispose asbestos-exposed patients to malignant pleural mesothelioma. Cancer Lett. 2017.

    Google Scholar 

  75. Cheng JQ, Lee WC, Klein MA, Cheng GZ, Jhanwar SC, Testa JR. Frequent mutations of NF2 and allelic loss from chromosome band 22q12 in malignant mesothelioma: evidence for a two-hit mechanism of NF2 inactivation. Genes Chromosomes Cancer. 1999;24(3):238–42.

    Article  PubMed  CAS  Google Scholar 

  76. Bianchi AB, Mitsunaga SI, Cheng JQ, Klein WM, Jhanwar SC, Seizinger B, Kley N, Klein-Szanto AJ, Testa JR. High frequency of inactivating mutations in the neurofibromatosis type 2 gene (NF2) in primary malignant mesotheliomas. Proc Natl Acad Sci U S A. 1995;92(24):10854–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Murakami H, Mizuno T, Taniguchi T, Fujii M, Ishiguro F, Fukui T, Akatsuka S, Horio Y, Hida T, Kondo Y, et al. LATS2 is a tumor suppressor gene of malignant mesothelioma. Cancer Res. 2011;71(3):873–83.

    Article  PubMed  CAS  Google Scholar 

  78. Miyanaga A, Masuda M, Tsuta K, Kawasaki K, Nakamura Y, Sakuma T, Asamura H, Gemma A, Yamada T. Hippo pathway gene mutations in malignant mesothelioma: revealed by RNA and targeted exon sequencing. J Thorac Oncol. 2015;10(5):844–51.

    Article  PubMed  CAS  Google Scholar 

  79. Yokoyama T, Osada H, Murakami H, Tatematsu Y, Taniguchi T, Kondo Y, Yatabe Y, Hasegawa Y, Shimokata K, Horio Y, et al. YAP1 is involved in mesothelioma development and negatively regulated by Merlin through phosphorylation. Carcinogenesis. 2008;29(11):2139–46.

    Article  PubMed  CAS  Google Scholar 

  80. Langerak AW, De Laat PA, Van Der Linden-Van Beurden CA, Delahaye M, Van Der Kwast TH, Hoogsteden HC, Benner R, Versnel MA. Expression of platelet-derived growth factor (PDGF) and PDGF receptors in human malignant mesothelioma in vitro and in vivo. J Pathol. 1996;178(2):151–60.

    Article  PubMed  CAS  Google Scholar 

  81. Langerak AW, van der Linden-van Beurden CA, Versnel MA. Regulation of differential expression of platelet-derived growth factor alpha- and beta-receptor mRNA in normal and malignant human mesothelial cell lines. Biochim Biophys Acta. 1996;1305(1-2):63–70.

    Article  PubMed  Google Scholar 

  82. Gerwin BI. Cytokine signaling in mesothelial cells: receptor expression closes the autocrine loop. Am J Respir Cell Mol Biol. 1996;14(6):505–7.

    Article  PubMed  CAS  Google Scholar 

  83. Heintz NH, Janssen YM, Mossman BT. Persistent induction of c-fos and c-jun expression by asbestos. Proc Natl Acad Sci U S A. 1993;90(8):3299–303.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Sekido Y. Molecular biology of malignant mesothelioma. Environ Health Prev Med. 2008;13(2):65–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Maki-Nevala S, Sarhadi VK, Knuuttila A, Scheinin I, Ellonen P, Lagstrom S, Ronty M, Kettunen E, Husgafvel-Pursiainen K, Wolff H, et al. Driver gene and novel mutations in asbestos-exposed lung adenocarcinoma and malignant mesothelioma detected by exome sequencing. Lung. 2016;194(1):125–35.

    Article  PubMed  CAS  Google Scholar 

  86. Bueno R, De Rienzo A, Dong L, Gordon GJ, Hercus CF, Richards WG, Jensen RV, Anwar A, Maulik G, Chirieac LR, et al. Second generation sequencing of the mesothelioma tumor genome. PLoS One. 2010;5(5):e10612.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Guo G, Chmielecki J, Goparaju C, Heguy A, Dolgalev I, Carbone M, Seepo S, Meyerson M, Pass HI. Whole-exome sequencing reveals frequent genetic alterations in BAP1, NF2, CDKN2A, and CUL1 in malignant pleural mesothelioma. Cancer Res. 2015;75(2):264–9.

    Article  PubMed  CAS  Google Scholar 

  88. Kang HC, Kim HK, Lee S, Mendez P, Kim JW, Woodard G, Yoon JH, Jen KY, Fang LT, Jones K, et al. Whole exome and targeted deep sequencing identify genome-wide allelic loss and frequent SETDB1 mutations in malignant pleural mesotheliomas. Oncotarget. 2016;7(7):8321–31.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Sugarbaker DJ, Richards WG, Gordon GJ, Dong L, De Rienzo A, Maulik G, Glickman JN, Chirieac LR, Hartman ML, Taillon BE, et al. Transcriptome sequencing of malignant pleural mesothelioma tumors. Proc Natl Acad Sci U S A. 2008;105(9):3521–6.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Dong L, Jensen RV, De Rienzo A, Gordon GJ, Xu Y, Sugarbaker DJ, Bueno R. Differentially expressed alternatively spliced genes in malignant pleural mesothelioma identified using massively parallel transcriptome sequencing. BMC Med Genet. 2009;10:149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Bueno R, Stawiski EW, Goldstein LD, Durinck S, De Rienzo A, Modrusan Z, Gnad F, Nguyen TT, Jaiswal BS, Chirieac LR, et al. Comprehensive genomic analysis of malignant pleural mesothelioma identifies recurrent mutations, gene fusions and splicing alterations. Nat Genet. 2016;48(4):407–16.

    Article  PubMed  CAS  Google Scholar 

  92. Hylebos M, Van Camp G, van Meerbeeck JP, Op de Beeck K. The genetic landscape of malignant pleural mesothelioma: results from massively parallel sequencing. J Thorac Oncol. 2016;11(10):1615–26.

    Article  PubMed  Google Scholar 

  93. Lo Iacono M, Monica V, Righi L, Grosso F, Libener R, Vatrano S, Bironzo P, Novello S, Musmeci L, Volante M, et al. Targeted next-generation sequencing of cancer genes in advanced stage malignant pleural mesothelioma: a retrospective study. J Thorac Oncol. 2015;10(3):492–9.

    Article  PubMed  CAS  Google Scholar 

  94. Joseph NM, Chen YY, Nasr A, Yeh I, Talevich E, Onodera C, Bastian BC, Rabban JT, Garg K, Zaloudek C, et al. Genomic profiling of malignant peritoneal mesothelioma reveals recurrent alterations in epigenetic regulatory genes BAP1, SETD2, and DDX3X. Mod Pathol. 2017;30(2):246–54.

    Article  PubMed  CAS  Google Scholar 

  95. Chirac P, Maillet D, Lepretre F, Isaac S, Glehen O, Figeac M, Villeneuve L, Peron J, Gibson F, Galateau-Salle F, et al. Genomic copy number alterations in 33 malignant peritoneal mesothelioma analyzed by comparative genomic hybridization array. Hum Pathol. 2016;55:72–82.

    Article  PubMed  CAS  Google Scholar 

  96. Alakus H, Yost SE, Woo B, French R, Lin GY, Jepsen K, Frazer KA, Lowy AM, Harismendy O. BAP1 mutation is a frequent somatic event in peritoneal malignant mesothelioma. J Transl Med. 2015;13:122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Singhi AD, Krasinskas AM, Choudry HA, Bartlett DL, Pingpank JF, Zeh HJ, Luvison A, Fuhrer K, Bahary N, Seethala RR, et al. The prognostic significance of BAP1, NF2, and CDKN2A in malignant peritoneal mesothelioma. Mod Pathol. 2016;29(1):14–24.

    Article  PubMed  CAS  Google Scholar 

  98. Panagopoulos I, Gorunova L, Davidson B, Heim S. Novel TNS3-MAP 3K3 and ZFPM2-ELF5 fusion genes identified by RNA sequencing in multicystic mesothelioma with t(7,17)(p12;q23) and t(8,11)(q23;p13). Cancer Lett. 2015;357(2):502–9.

    Article  PubMed  CAS  Google Scholar 

  99. Kato S, Tomson BN, Buys TP, Elkin SK, Carter JL, Kurzrock R. Genomic landscape of malignant mesotheliomas. Mol Cancer Ther. 2016;15(10):2498–507.

    Article  PubMed  CAS  Google Scholar 

  100. Brevet M, Shimizu S, Bott MJ, Shukla N, Zhou Q, Olshen AB, Rusch V, Ladanyi M. Coactivation of receptor tyrosine kinases in malignant mesothelioma as a rationale for combination targeted therapy. J Thorac Oncol. 2011;6(5):864–74.

    Article  PubMed  Google Scholar 

  101. Sun X, Wei L, Liden J, Hui G, Dahlman-Wright K, Hjerpe A, Dobra K. Molecular characterization of tumour heterogeneity and malignant mesothelioma cell differentiation by gene profiling. J Pathol. 2005;207(1):91–101.

    Article  PubMed  CAS  Google Scholar 

  102. Gordon GJ, Rockwell GN, Jensen RV, Rheinwald JG, Glickman JN, Aronson JP, Pottorf BJ, Nitz MD, Richards WG, Sugarbaker DJ, et al. Identification of novel candidate oncogenes and tumor suppressors in malignant pleural mesothelioma using large-scale transcriptional profiling. Am J Pathol. 2005;166(6):1827–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Rihn BH, Mohr S, McDowell SA, Binet S, Loubinoux J, Galateau F, Keith G, Leikauf GD. Differential gene expression in mesothelioma. FEBS Lett. 2000;480(2-3):95–100.

    Article  PubMed  CAS  Google Scholar 

  104. Sun X, Dobra K, Bjornstedt M, Hjerpe A. Upregulation of 9 genes, including that for thioredoxin, during epithelial differentiation of mesothelioma cells. Differentiation. 2000;66(4-5):181–8.

    Article  PubMed  CAS  Google Scholar 

  105. Singhal S, Wiewrodt R, Malden LD, Amin KM, Matzie K, Friedberg J, Kucharczuk JC, Litzky LA, Johnson SW, Kaiser LR, et al. Gene expression profiling of malignant mesothelioma. Clin Cancer Res. 2003;9(8):3080–97.

    PubMed  CAS  Google Scholar 

  106. Roe OD, Anderssen E, Helge E, Pettersen CH, Olsen KS, Sandeck H, Haaverstad R, Lundgren S, Larsson E. Genome-wide profile of pleural mesothelioma versus parietal and visceral pleura: the emerging gene portrait of the mesothelioma phenotype. PLoS One. 2009;4(8):e6554.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Gray SG, Fennell DA, Mutti L, O’Byrne KJ. In arrayed ranks: array technology in the study of mesothelioma. J Thorac Oncol. 2009;4(3):411–25.

    Article  PubMed  Google Scholar 

  108. Sahab ZJ, Hall MD, Zhang L, Cheema AK, Byers SW. Tumor suppressor RARRES1 regulates DLG2, PP2A, VCP, EB1, and Ankrd26. J Cancer. 2010;1:14–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Holmgren A, Bjornstedt M. Thioredoxin and thioredoxin reductase. Methods Enzymol. 1995;252:199–208.

    Article  PubMed  CAS  Google Scholar 

  110. Rubartelli A, Bajetto A, Allavena G, Wollman E, Sitia R. Secretion of thioredoxin by normal and neoplastic cells through a leaderless secretory pathway. J Biol Chem. 1992;267(34):24161–4.

    PubMed  CAS  Google Scholar 

  111. Williams CH Jr. Thioredoxin-thioredoxin reductase—a system that has come of age. Eur J Biochem. 2000;267(20):6101.

    Article  PubMed  CAS  Google Scholar 

  112. Williams CH, Arscott LD, Muller S, Lennon BW, Ludwig ML, Wang PF, Veine DM, Becker K, Schirmer RH. Thioredoxin reductase two modes of catalysis have evolved. Eur J Biochem. 2000;267(20):6110–7.

    Article  PubMed  CAS  Google Scholar 

  113. Hayashi T, Ueno Y, Okamoto T. Oxidoreductive regulation of nuclear factor kappa B. Involvement of a cellular reducing catalyst thioredoxin. J Biol Chem. 1993;268(15):11380–8.

    PubMed  CAS  Google Scholar 

  114. Kumar-Singh S, Weyler J, Martin MJ, Vermeulen PB, Van Marck E. Angiogenic cytokines in mesothelioma: a study of VEGF, FGF-1 and -2, and TGF beta expression. J Pathol. 1999;189(1):72–8.

    Article  PubMed  CAS  Google Scholar 

  115. DeLong P, Carroll RG, Henry AC, Tanaka T, Ahmad S, Leibowitz MS, Sterman DH, June CH, Albelda SM, Vonderheide RH. Regulatory T cells and cytokines in malignant pleural effusions secondary to mesothelioma and carcinoma. Cancer Biol Ther. 2005;4(3):342–6.

    Article  PubMed  CAS  Google Scholar 

  116. Jagadeeswaran R, Ma PC, Seiwert TY, Jagadeeswaran S, Zumba O, Nallasura V, Ahmed S, Filiberti R, Paganuzzi M, Puntoni R, et al. Functional analysis of c-Met/hepatocyte growth factor pathway in malignant pleural mesothelioma. Cancer Res. 2006;66(1):352–61.

    Article  PubMed  CAS  Google Scholar 

  117. Destro A, Ceresoli GL, Falleni M, Zucali PA, Morenghi E, Bianchi P, Pellegrini C, Cordani N, Vaira V, Alloisio M, et al. EGFR overexpression in malignant pleural mesothelioma. An immunohistochemical and molecular study with clinico-pathological correlations. Lung Cancer. 2006;51(2):207–15.

    Article  PubMed  CAS  Google Scholar 

  118. Goto Y, Shinjo K, Kondo Y, Shen L, Toyota M, Suzuki H, Gao W, An B, Fujii M, Murakami H, et al. Epigenetic profiles distinguish malignant pleural mesothelioma from lung adenocarcinoma. Cancer Res. 2009;69(23):9073–82.

    Article  PubMed  CAS  Google Scholar 

  119. Christensen BC, Houseman EA, Poage GM, Godleski JJ, Bueno R, Sugarbaker DJ, Wiencke JK, Nelson HH, Marsit CJ, Kelsey KT. Integrated profiling reveals a global correlation between epigenetic and genetic alterations in mesothelioma. Cancer Res. 2010;70(14):5686–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Kannerstein M, Churg J. Mesothelioma in man and experimental animals. Environ Health Perspect. 1980;34:31–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Johansson L, Linden CJ. Aspects of histopathologic subtype as a prognostic factor in 85 pleural mesotheliomas. Chest. 1996;109(1):109–14.

    Article  PubMed  CAS  Google Scholar 

  122. Segal A, Sterrett GF, Frost FA, Shilkin KB, Olsen NJ, Musk AW, Nowak AK, Robinson BW, Creaney J. A diagnosis of malignant pleural mesothelioma can be made by effusion cytology: results of a 20 year audit. Pathology. 2013;45(1):44–8.

    Article  PubMed  Google Scholar 

  123. Hjerpe A, Ascoli V, Bedrossian CW, Boon ME, Creaney J, Davidson B, Dejmek A, Dobra K, Fassina A, Field A, et al. Guidelines for the cytopathologic diagnosis of epithelioid and mixed-type malignant mesothelioma. Complementary statement from the International Mesothelioma Interest Group, also endorsed by the International Academy of Cytology and the Papanicolaou Society of Cytopathology. Acta Cytol. 2015;59(1):2–16.

    Article  PubMed  CAS  Google Scholar 

  124. Husain AN, Colby TV, Ordonez NG, Allen TC, Attanoos RL, Beasley MB, Butnor KJ, Chirieac LR, Churg AM, Dacic S et al. Guidelines for pathologic diagnosis of malignant mesothelioma: 2017 update of the Consensus Statement from the International Mesothelioma Interest Group. Arch Pathol Lab Med. 2017.

    Google Scholar 

  125. Dejmek A, Hjerpe A. Immunohistochemical reactivity in mesothelioma and adenocarcinoma: a stepwise logistic regression analysis. Apmis. 1994;102(4):255–64.

    Article  PubMed  CAS  Google Scholar 

  126. Ordonez NG. Role of immunohistochemistry in differentiating epithelial mesothelioma from adenocarcinoma. Review and update. Am J Clin Pathol. 1999;112(1):75–89.

    Article  PubMed  CAS  Google Scholar 

  127. Brockstedt U, Gulyas M, Dobra K, Dejmek A, Hjerpe A. An optimized battery of eight antibodies that can distinguish most cases of epithelial mesothelioma from adenocarcinoma. Am J Clin Pathol. 2000;114(2):203–9.

    Article  PubMed  CAS  Google Scholar 

  128. Carella R, Deleonardi G, D’Errico A, Salerno A, Egarter-Vigl E, Seebacher C, Donazzan G, Grigioni WF. Immunohistochemical panels for differentiating epithelial malignant mesothelioma from lung adenocarcinoma: a study with logistic regression analysis. Am J Surg Pathol. 2001;25(1):43–50.

    Article  PubMed  CAS  Google Scholar 

  129. Warhol MJ, Hickey WF, Corson JM. Malignant mesothelioma: ultrastructural distinction from adenocarcinoma. Am J Surg Pathol. 1982;6(4):307–14.

    Article  PubMed  CAS  Google Scholar 

  130. Stoebner P, Brambilla E. Ultrastructural diagnosis of pleural tumors. Pathol Res Pract. 1982;173(4):402–16.

    Article  PubMed  CAS  Google Scholar 

  131. Nurminen M, Dejmek A, Martensson G, Thylen A, Hjerpe A. Clinical utility of liquid-chromatographic analysis of effusions for hyaluronate content. Clin Chem. 1994;40(5):777–80.

    PubMed  CAS  Google Scholar 

  132. Robinson BW, Creaney J, Lake R, Nowak A, Musk AW, de Klerk N, Winzell P, Hellstrom KE, Hellstrom I. Mesothelin-family proteins and diagnosis of mesothelioma. Lancet. 2003;362(9396):1612–6.

    Article  PubMed  CAS  Google Scholar 

  133. Dejmek A, Brockstedt U, Hjerpe A. Optimization of a battery using nine immunocytochemical variables for distinguishing between epithelial mesothelioma and adenocarcinoma. Apmis. 1997;105(11):889–94.

    Article  PubMed  CAS  Google Scholar 

  134. Dejmek A, Hjerpe A. The combination of CEA, EMA, and BerEp4 and hyaluronan analysis specifically identifies 79% of all histologically verified mesotheliomas causing an effusion. Diagn Cytopathol. 2005;32(3):160–6.

    Article  PubMed  Google Scholar 

  135. Davidson B. The diagnostic and molecular characteristics of malignant mesothelioma and ovarian/peritoneal serous carcinoma. Cytopathology. 2011;22(1):5–21.

    Article  PubMed  CAS  Google Scholar 

  136. Davidson B. New diagnostic and molecular characteristics of malignant mesothelioma. Ultrastruct Pathol. 2008;32(6):227–40.

    Article  PubMed  Google Scholar 

  137. Davidson B, Nielsen S, Christensen J, Asschenfeldt P, Berner A, Risberg B, Johansen P. The role of desmin and N-cadherin in effusion cytology: a comparative study using established markers of mesothelial and epithelial cells. Am J Surg Pathol. 2001;25(11):1405–12.

    Article  PubMed  CAS  Google Scholar 

  138. Attanoos RL, Griffin A, Gibbs AR. The use of immunohistochemistry in distinguishing reactive from neoplastic mesothelium. A novel use for desmin and comparative evaluation with epithelial membrane antigen, p53, platelet-derived growth factor-receptor, P-glycoprotein and Bcl-2. Histopathology. 2003;43(3):231–8.

    Article  PubMed  CAS  Google Scholar 

  139. Parham DM, Webber B, Holt H, Williams WK, Maurer H. Immunohistochemical study of childhood rhabdomyosarcomas and related neoplasms. Results of an Intergroup Rhabdomyosarcoma study project. Cancer. 1991;67(12):3072–80.

    Article  PubMed  CAS  Google Scholar 

  140. Sheffield BS, Hwang HC, Lee AF, Thompson K, Rodriguez S, Tse CH, Gown AM, Churg A. BAP1 immunohistochemistry and p16 FISH to separate benign from malignant mesothelial proliferations. Am J Surg Pathol. 2015;39(7):977–82.

    Article  PubMed  Google Scholar 

  141. McGregor SM, Dunning R, Hyjek E, Vigneswaran W, Husain AN, Krausz T. BAP1 facilitates diagnostic objectivity, classification, and prognostication in malignant pleural mesothelioma. Hum Pathol. 2015;46(11):1670–8.

    Article  PubMed  CAS  Google Scholar 

  142. Cigognetti M, Lonardi S, Fisogni S, Balzarini P, Pellegrini V, Tironi A, Bercich L, Bugatti M, Rossi G, Murer B, et al. BAP1 (BRCA1-associated protein 1) is a highly specific marker for differentiating mesothelioma from reactive mesothelial proliferations. Mod Pathol. 2015;28(8):1043–57.

    Article  PubMed  CAS  Google Scholar 

  143. Andrici J, Sheen A, Sioson L, Wardell K, Clarkson A, Watson N, Ahadi MS, Farzin M, Toon CW, Gill AJ. Loss of expression of BAP1 is a useful adjunct, which strongly supports the diagnosis of mesothelioma in effusion cytology. Mod Pathol. 2015;28(10):1360–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  144. Hwang HC, Sheffield BS, Rodriguez S, Thompson K, Tse CH, Gown AM, Churg A. Utility of BAP1 immunohistochemistry and p16 (CDKN2A) FISH in the diagnosis of malignant mesothelioma in effusion cytology specimens. Am J Surg Pathol. 2016;40(1):120–6.

    Article  PubMed  Google Scholar 

  145. Shen J, Pinkus GS, Deshpande V, Cibas ES. Usefulness of EMA, GLUT-1, and XIAP for the cytologic diagnosis of malignant mesothelioma in body cavity fluids. Am J Clin Pathol. 2009;131(4):516–23.

    Article  PubMed  CAS  Google Scholar 

  146. Hasteh F, Lin GY, Weidner N, Michael CW. The use of immunohistochemistry to distinguish reactive mesothelial cells from malignant mesothelioma in cytologic effusions. Cancer Cytopathol. 2010;118(2):90–6.

    Article  PubMed  Google Scholar 

  147. Minato H, Kurose N, Fukushima M, Nojima T, Usuda K, Sagawa M, Sakuma T, Ooi A, Matsumoto I, Oda M, et al. Comparative immunohistochemical analysis of IMP3, GLUT1, EMA, CD146, and desmin for distinguishing malignant mesothelioma from reactive mesothelial cells. Am J Clin Pathol. 2014;141(1):85–93.

    Article  PubMed  Google Scholar 

  148. Flores-Staino C, Darai-Ramqvist E, Dobra K, Hjerpe A, et al. Lung cancer. 2010;68(1):39–43.

    Article  PubMed  Google Scholar 

  149. Legrand M, Pariente R. Ultrastructural study of pleural fluid in mesothelioma. Thorax. 1974;29(2):164–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Henderson DW, Papadimitriou JM, Coleman M. Ultrastructural appearances of tumours. Edinburgh: Churchill Livingstone; 1986.

    Google Scholar 

  151. Ghadially F. Diagnostic electron microscopy of tumours. London: Butterworth; 1985. p. 96–105.

    Book  Google Scholar 

  152. Blix G. Hyaluronic acid in the pleural and peritoneal fluids from a case of mesothelioma. Acta Soc Med Ups. 1951;56(1-2):47–50.

    PubMed  CAS  Google Scholar 

  153. Harington JS, Wagner JC, Smith M. The detection of hyaluronic acid in pleural fluids of cases with diffuse pleural mesotheliomas. Br J Exp Pathol. 1963;44:81–3.

    PubMed  PubMed Central  CAS  Google Scholar 

  154. Asplund T, Versnel MA, Laurent TC, Heldin P. Human mesothelioma cells produce factors that stimulate the production of hyaluronan by mesothelial cells and fibroblasts. Cancer Res. 1993;53(2):388–92.

    PubMed  CAS  Google Scholar 

  155. Liu Z, Dobra K, Hauzenberger D, Klominek J. Expression of hyaluronan synthases and hyaluronan in malignant mesothelioma cells. Anticancer Res. 2004;24(2B):599–603.

    PubMed  CAS  Google Scholar 

  156. Hjerpe A. Liquid-chromatographic determination of hyaluronic acid in pleural and ascitic fluids. Clin Chem. 1986;32(6):952–6.

    PubMed  CAS  Google Scholar 

  157. Chichibu K, Matsuura T, Shichijo S, Yokoyama MM. Assay of serum hyaluronic acid in clinical application. Clin Chim Acta. 1989;181(3):317–23.

    Article  PubMed  CAS  Google Scholar 

  158. Mundt F, Nilsonne G, Arslan S, Csuros K, Hillerdal G, Yildirim H, Metintas M, Dobra K, Hjerpe A. Hyaluronan and N-ERC/mesothelin as key biomarkers in a specific two-step model to predict pleural malignant mesothelioma. PLoS One. 2013;8(8):e72030.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Engstrom-Laurent A, Hallgren R. Circulating hyaluronate in rheumatoid arthritis: relationship to inflammatory activity and the effect of corticosteroid therapy. Ann Rheum Dis. 1985;44(2):83–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  160. Engstrom-Laurent A, Loof L, Nyberg A, Schroder T. Increased serum levels of hyaluronate in liver disease. Hepatology. 1985;5(4):638–42.

    Article  PubMed  CAS  Google Scholar 

  161. Fraser JR, Laurent TC, Engstrom-Laurent A, Laurent UG. Elimination of hyaluronic acid from the blood stream in the human. Clin Exp Pharmacol Physiol. 1984;11(1):17–25.

    Article  PubMed  CAS  Google Scholar 

  162. Thylen A, Wallin J, Martensson G. Hyaluronan in serum as an indicator of progressive disease in hyaluronan-producing malignant mesothelioma. Cancer. 1999;86(10):2000–5.

    Article  PubMed  CAS  Google Scholar 

  163. Rump A, Morikawa Y, Tanaka M, Minami S, Umesaki N, Takeuchi M, Miyajima A. Binding of ovarian cancer antigen CA125/MUC16 to mesothelin mediates cell adhesion. J Biol Chem. 2004;279(10):9190–8.

    Article  PubMed  CAS  Google Scholar 

  164. Hollevoet K, Bernard D, De Geeter F, Walgraeve N, Van den Eeckhaut A, Vanholder R, Van de Wiele C, Stove V, van Meerbeeck JP, Delanghe JR. Glomerular filtration rate is a confounder for the measurement of soluble mesothelin in serum. Clin Chem. 2009;55(7):1431–3.

    Article  PubMed  CAS  Google Scholar 

  165. Creaney J, Olsen NJ, Brims F, Dick IM, Musk AW, de Klerk NH, Skates SJ, Robinson BW. Serum mesothelin for early detection of asbestos-induced cancer malignant mesothelioma. Cancer Epidemiol Biomarkers Prev. 2010;19(9):2238–46.

    Article  PubMed  CAS  Google Scholar 

  166. Shiomi K, Miyamoto H, Segawa T, Hagiwara Y, Ota A, Maeda M, Takahashi K, Masuda K, Sakao Y, Hino O. Novel ELISA system for detection of N-ERC/mesothelin in the sera of mesothelioma patients. Cancer Sci. 2006;97(9):928–32.

    Article  PubMed  CAS  Google Scholar 

  167. Pass HI, Lott D, Lonardo F, Harbut M, Liu Z, Tang N, Carbone M, Webb C, Wali A. Asbestos exposure, pleural mesothelioma, and serum osteopontin levels. N Engl J Med. 2005;353(15):1564–73.

    Article  PubMed  CAS  Google Scholar 

  168. Grigoriu BD, Scherpereel A, Devos P, Chahine B, Letourneux M, Lebailly P, Gregoire M, Porte H, Copin MC, Lassalle P. Utility of osteopontin and serum mesothelin in malignant pleural mesothelioma diagnosis and prognosis assessment. Clin Cancer Res. 2007;13(10):2928–35.

    Article  PubMed  CAS  Google Scholar 

  169. Raiko I, Sander I, Weber DG, Raulf-Heimsoth M, Gillissen A, Kollmeier J, Scherpereel A, Bruning T, Johnen G. Development of an enzyme-linked immunosorbent assay for the detection of human calretinin in plasma and serum of mesothelioma patients. BMC Cancer. 2010;10:242.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Gulyas M, Hjerpe A. Proteoglycans and WT1 as markers for distinguishing adenocarcinoma, epithelioid mesothelioma, and benign mesothelium. J Pathol. 2003;199(4):479–87.

    Article  PubMed  CAS  Google Scholar 

  171. Kumar-Singh S, Jacobs W, Dhaene K, Weyn B, Bogers J, Weyler J, Van Marck E. Syndecan-1 expression in malignant mesothelioma: correlation with cell differentiation, WT1 expression, and clinical outcome. J Pathol. 1998;186(3):300–5.

    Article  PubMed  CAS  Google Scholar 

  172. Saqi A, Yun SS, Yu GH, Alexis D, Taub RN, Powell CA, Borczuk AC. Utility of CD138 (syndecan-1) in distinguishing carcinomas from mesotheliomas. Diagn Cytopathol. 2005;33(2):65–70.

    Article  PubMed  Google Scholar 

  173. Seidel C, Gulyas M, David G, Dobra K, Theocharis AD, Hjerpe A. A sandwich ELISA for the estimation of human syndecan-2 and syndecan-4 in biological samples. J Pharm Biomed Anal. 2004;34(4):797–801.

    Article  PubMed  CAS  Google Scholar 

  174. Tsuji S, Tsuura Y, Morohoshi T, Shinohara T, Oshita F, Yamada K, Kameda Y, Ohtsu T, Nakamura Y, Miyagi Y. Secretion of intelectin-1 from malignant pleural mesothelioma into pleural effusion. Br J Cancer. 2010;103(4):517–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Chen Z, Gaudino G, Pass HI, Carbone M, Yang H. Diagnostic and prognostic biomarkers for malignant mesothelioma: an update. Transl Lung Cancer Res. 2017;6(3):259–69.

    Article  PubMed  PubMed Central  Google Scholar 

  176. Rundlof AK, Fernandes AP, Selenius M, Babic M, Shariatgorji M, Nilsonne G, Ilag LL, Dobra K, Bjornstedt M. Quantification of alternative mRNA species and identification of thioredoxin reductase 1 isoforms in human tumor cells. Differentiation. 2007;75(2):123–32.

    Article  PubMed  CAS  Google Scholar 

  177. Mundt F, Heidari-Hamedani G, Nilsonne G, Metintas M, Hjerpe A, Dobra K. Diagnostic and prognostic value of soluble syndecan-1 in pleural malignancies. Biomed Res Int. 2014;2014:419853.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  178. Mundt F, Johansson HJ, Forshed J, Arslan S, Metintas M, Dobra K, Lehtio J, Hjerpe A. Proteome screening of pleural effusions identifies galectin 1 as a diagnostic biomarker and highlights several prognostic biomarkers for malignant mesothelioma. Mol Cell Proteomics. 2014;13(3):701–15.

    Article  PubMed  CAS  Google Scholar 

  179. Yuan Y, Nymoen DA, Stavnes HT, Rosnes AK, Bjorang O, Wu C, Nesland JM, Davidson B. Tenascin-X is a novel diagnostic marker of malignant mesothelioma. Am J Surg Pathol. 2009;33(11):1673–82.

    Article  PubMed  PubMed Central  Google Scholar 

  180. Aerts JG, Delahaye M, van der Kwast TH, Davidson B, Hoogsteden HC, van Meerbeeck JP. The high post-test probability of a cytological examination renders further investigations to establish a diagnosis of epithelial malignant pleural mesothelioma redundant. Diagn Cytopathol. 2006;34(8):523–7.

    Article  PubMed  CAS  Google Scholar 

  181. Cedres S, Ponce-Aix S, Zugazagoitia J, Sansano I, Enguita A, Navarro-Mendivil A, Martinez-Marti A, Martinez P, Felip E. Analysis of expression of programmed cell death 1 ligand 1 (PD-L1) in malignant pleural mesothelioma (MPM). PLoS One. 2015;10(3):e0121071.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Khanna S, Thomas A, Abate-Daga D, Zhang J, Morrow B, Steinberg SM, Orlandi A, Ferroni P, Schlom J, Guadagni F, et al. Malignant mesothelioma effusions are infiltrated by CD3+ T cells highly expressing PD-L1 and the PD-L1+ tumor cells within these effusions are susceptible to ADCC by the anti-PD-L1 antibody Avelumab. J Thorac Oncol. 2016;11(11):1993–2005.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Mansfield AS, Roden AC, Peikert T, Sheinin YM, Harrington SM, Krco CJ, Dong H, Kwon ED. B7-H1 expression in malignant pleural mesothelioma is associated with sarcomatoid histology and poor prognosis. J Thorac Oncol. 2014;9(7):1036–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Dozier J, Zheng H, Adusumilli PS. Immunotherapy for malignant pleural mesothelioma: current status and future directions. Transl Lung Cancer Res. 2017;6(3):315–24.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Bakker E, Guazzelli A, Ashtiani F, Demonacos C, Krstic-Demonacos M, Mutti L. Immunotherapy advances for mesothelioma treatment. Expert Rev Anticancer Ther. 2017;17:799–814.

    Article  PubMed  CAS  Google Scholar 

  186. Alley EW, Lopez J, Santoro A, Morosky A, Saraf S, Piperdi B, van Brummelen E. Clinical safety and activity of pembrolizumab in patients with malignant pleural mesothelioma (KEYNOTE-028): preliminary results from a non-randomised, open-label, phase 1b trial. Lancet Oncol. 2017;18(5):623–30.

    Article  PubMed  CAS  Google Scholar 

  187. Wu L, de Perrot M. Radio-immunotherapy and chemo-immunotherapy as a novel treatment paradigm in malignant pleural mesothelioma. Transl Lung Cancer Res. 2017;6(3):325–34.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Alley EW, Katz SI, Cengel KA, Simone CB II. Immunotherapy and radiation therapy for malignant pleural mesothelioma. Transl Lung Cancer Res. 2017;6(2):212–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Klug F, Prakash H, Huber PE, Seibel T, Bender N, Halama N, Pfirschke C, Voss RH, Timke C, Umansky L, et al. Low-dose irradiation programs macrophage differentiation to an iNOS(+)/M1 phenotype that orchestrates effective T cell immunotherapy. Cancer Cell. 2013;24(5):589–602.

    Article  PubMed  CAS  Google Scholar 

  190. Lizotte PH, Jones RE, Keogh L, Ivanova E, Liu H, Awad MM, Hammerman PS, Gill RR, Richards WG, Barbie DA, et al. Fine needle aspirate flow cytometric phenotyping characterizes immunosuppressive nature of the mesothelioma microenvironment. Sci Rep. 2016;6:31745.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Zucali PA, Giovannetti E, Assaraf YG, Ceresoli GL, Peters GJ, Santoro A. New tricks for old biomarkers: thymidylate synthase expression as a predictor of pemetrexed activity in malignant mesothelioma. Ann Oncol. 2010;21(7):1560–1.

    Article  PubMed  CAS  Google Scholar 

  192. Uramoto H, Onitsuka T, Shimokawa H, Hanagiri T. TS, DHFR and GARFT expression in non-squamous cell carcinoma of NSCLC and malignant pleural mesothelioma patients treated with pemetrexed. Anticancer Res. 2010;30(10):4309–15.

    PubMed  Google Scholar 

  193. Vilmar A, Sorensen JB. Excision repair cross-complementation group 1 (ERCC1) in platinum-based treatment of non-small cell lung cancer with special emphasis on carboplatin: a review of current literature. Lung Cancer. 2009;64(2):131–9.

    Article  PubMed  Google Scholar 

  194. Mansour MSI, Seidal T, Mager U, Baigi A, Dobra K, Dejmek A. Determination of PD-L1 expression in effusions from mesothelioma by immuno-cytochemical staining. Cancer Cytopathol. 2017;125(12):908–17. https://doi.org/10.1002/cncy.21917.

    Article  PubMed  CAS  Google Scholar 

  195. Szulkin A, Nilsonne G, Mundt F, Wasik AM, Souri P, Hjerpe A, Dobra K. Variation in drug sensitivity of malignant mesothelioma cell lines with substantial effects of selenite and bortezomib, highlights need for individualized therapy. PLoS One. 2013;8(6):e65903.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Markasz L, Kis LL, Stuber G, Flaberg E, Otvos R, Eksborg S, Skribek H, Olah E, Szekely L. Hodgkin-lymphoma-derived cells show high sensitivity to dactinomycin and paclitaxel. Leuk Lymphoma. 2007;48(9):1835–45.

    Article  PubMed  CAS  Google Scholar 

  197. Flaberg E, Markasz L, Petranyi G, Stuber G, Dicso F, Alchihabi N, Olah E, Csizy I, Jozsa T, Andren O, et al. High throughput live cell imaging reveals differential inhibition of tumor cell proliferation by human fibroblasts. Int J Cancer. 2011;128(12):2793–802.

    Article  PubMed  CAS  Google Scholar 

  198. Szulkin A, Otvos R, Hillerdal CO, Celep A, Yousef-Fadhel E, Skribek H, Hjerpe A, Szekely L, Dobra K. Characterization and drug sensitivity profiling of primary malignant mesothelioma cells from pleural effusions. BMC Cancer. 2014;14:709.

    Article  PubMed  PubMed Central  Google Scholar 

  199. Alifrangis C, Janssen JQ, Badhai J, Iorio F, Schunselaar L, Kolluri K, Baas P, Garnett M, McDermott U. High throughput therapeutic screening of malignant pleural mesothelioma (MPM) to identify correlation of sensitivity to FGFR inhibitors with BAP1 inactivation. J Clin Oncol. 2015;33(15).

    Google Scholar 

  200. Roe OD, Szulkin A, Anderssen E, Flatberg A, Sandeck H, Amundsen T, Erlandsen SE, Dobra K, Sundstrom SH. Molecular resistance fingerprint of pemetrexed and platinum in a long-term survivor of mesothelioma. PLoS One. 2012;7(8):e40521.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  201. Takeuchi S, Seike M, Noro R, Soeno C, Sugano T, Zou F, Uesaka H, Nishijima N, Matsumoto M, Minegishi Y, et al. Significance of osteopontin in the sensitivity of malignant pleural mesothelioma to pemetrexed. Int J Oncol. 2014;44(6):1886–94.

    Article  PubMed  CAS  Google Scholar 

  202. Costello JC, Heiser LM, Georgii E, Gonen M, Menden MP, Wang NJ, Bansal M, Ammad-ud-din M, Hintsanen P, Khan SA, et al. A community effort to assess and improve drug sensitivity prediction algorithms. Nat Biotechnol. 2014;32(12):1202–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  203. Khan SA, Faisal A, Mpindi JP, Parkkinen JA, Kalliokoski T, Poso A, Kallioniemi OP, Wennerberg K, Kaski S. Comprehensive data-driven analysis of the impact of chemoinformatic structure on the genome-wide biological response profiles of cancer cells to 1159 drugs. BMC Bioinform. 2012;13:112.

    Article  Google Scholar 

  204. Jaklitsch MT, Grondin SC, Sugarbaker DJ. Treatment of malignant mesothelioma. World J Surg. 2001;25(2):210–7.

    Article  PubMed  CAS  Google Scholar 

  205. Molnar-Kimber KL, Sterman DH, Chang M, Kang EH, ElBash M, Lanuti M, Elshami A, Gelfand K, Wilson JM, Kaiser LR, et al. Impact of preexisting and induced humoral and cellular immune responses in an adenovirus-based gene therapy phase I clinical trial for localized mesothelioma. Hum Gene Ther. 1998;9(14):2121–33.

    Article  PubMed  CAS  Google Scholar 

  206. Sterman DH, Treat J, Litzky LA, Amin KM, Coonrod L, Molnar-Kimber K, Recio A, Knox L, Wilson JM, Albelda SM, et al. Adenovirus-mediated herpes simplex virus thymidine kinase/ganciclovir gene therapy in patients with localized malignancy: results of a phase I clinical trial in malignant mesothelioma. Hum Gene Ther. 1998;9(7):1083–92.

    Article  PubMed  CAS  Google Scholar 

  207. Caminschi I, Venetsanakos E, Leong CC, Garlepp MJ, Robinson BW, Scott B. Cytokine gene therapy of mesothelioma. Immune and antitumor effects of transfected interleukin-12. Am J Respir Cell Mol Biol. 1999;21(3):347–56.

    Article  PubMed  CAS  Google Scholar 

  208. McLaren BR, Whitaker D, Robinson BW, Lake RA. Expression and integrity of DNA topoisomerase II isoforms does not explain generic drug resistance in malignant mesothelioma. Cancer Chemother Pharmacol. 2001;48(1):1–8.

    Article  PubMed  CAS  Google Scholar 

  209. Segers K, Kumar-Singh S, Weyler J, Bogers J, Ramael M, Van Meerbeeck J, Van Marck E. Glutathione S-transferase expression in malignant mesothelioma and non-neoplastic mesothelium: an immunohistochemical study. J Cancer Res Clin Oncol. 1996;122(10):619–24.

    Article  PubMed  CAS  Google Scholar 

  210. Dejmek A, Brockstedt U, Hjerpe A. Immunoreactivity of pleural malignant mesotheliomas to glutathione S-transferases. Apmis. 1998;106(4):489–94.

    Article  PubMed  CAS  Google Scholar 

  211. Soini Y, Kinnula V, Kaarteenaho-Wiik R, Kurttila E, Linnainmaa K, Paakko P. Apoptosis and expression of apoptosis regulating proteins bcl-2, mcl-1, bcl-X, and bax in malignant mesothelioma. Clin Cancer Res. 1999;5(11):3508–15.

    PubMed  CAS  Google Scholar 

  212. Gordon GJ, Appasani K, Parcells JP, Mukhopadhyay NK, Jaklitsch MT, Richards WG, Sugarbaker DJ, Bueno R. Inhibitor of apoptosis protein-1 promotes tumor cell survival in mesothelioma. Carcinogenesis. 2002;23(6):1017–24.

    Article  PubMed  CAS  Google Scholar 

  213. Xia C, Xu Z, Yuan X, Uematsu K, You L, Li K, Li L, McCormick F, Jablons DM. Induction of apoptosis in mesothelioma cells by antisurvivin oligonucleotides. Mol Cancer Ther. 2002;1(9):687–94.

    PubMed  CAS  Google Scholar 

  214. Kleinberg L, Lie AK, Florenes VA, Nesland JM, Davidson B. Expression of inhibitor-of-apoptosis protein family members in malignant mesothelioma. Hum Pathol. 2007;38(7):986–94.

    Article  PubMed  CAS  Google Scholar 

  215. Zaffaroni N, Costa A, Pennati M, De Marco C, Affini E, Madeo M, Erdas R, Cabras A, Kusamura S, Baratti D, et al. Survivin is highly expressed and promotes cell survival in malignant peritoneal mesothelioma. Cell Oncol. 2007;29(6):453–66.

    PubMed  PubMed Central  CAS  Google Scholar 

  216. Vogelzang NJ, Rusthoven JJ, Symanowski J, Denham C, Kaukel E, Ruffie P, Gatzemeier U, Boyer M, Emri S, Manegold C, et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol. 2003;21(14):2636–44.

    Article  PubMed  CAS  Google Scholar 

  217. Hillerdal G, Sorensen JB, Sundstrom S, Vikstrom A, Hjerpe A. Treatment of malignant pleural mesothelioma with liposomized doxorubicine: prolonged time to progression and good survival. A Nordic study. Clin Respir J. 2008;2(2):80–5.

    Article  PubMed  CAS  Google Scholar 

  218. Schunselaar LM, Quispel-Janssen JM, Neefjes JJ, Baas P. A catalogue of treatment and technologies for malignant pleural mesothelioma. Expert Rev Anticancer Ther. 2016;16(4):455–63.

    Article  PubMed  CAS  Google Scholar 

  219. Remon J, Reguart N, Corral J, Lianes P. Malignant pleural mesothelioma: new hope in the horizon with novel therapeutic strategies. Cancer Treat Rev. 2015;41(1):27–34.

    Article  PubMed  CAS  Google Scholar 

  220. Signorelli D, Macerelli M, Proto C, Vitali M, Cona MS, Agustoni F, Zilembo N, Platania M, Trama A, Gallucci R, et al. Systemic approach to malignant pleural mesothelioma: what news of chemotherapy, targeted agents and immunotherapy? Tumori. 2016;102(1):18–30.

    Article  PubMed  CAS  Google Scholar 

  221. Guazzelli A, Bakker E, Tian K, Demonacos C, Krstic-Demonacos M, Mutti L. Promising investigational drug candidates in phase I and phase II clinical trials for mesothelioma. Expert Opin Investig Drugs. 2017;26(8):933–44.

    Article  PubMed  CAS  Google Scholar 

  222. Christoph DC, Eberhardt WE. Systemic treatment of malignant pleural mesothelioma: new agents in clinical trials raise hope of relevant improvements. Curr Opin Oncol. 2014;26(2):171–81.

    Article  PubMed  CAS  Google Scholar 

  223. Papa S, Popat S, Shah R, Prevost AT, Lal R, McLennan B, Cane P, Lang-Lazdunski L, Viney Z, Dunn JT, et al. Phase 2 study of sorafenib in malignant mesothelioma previously treated with platinum-containing chemotherapy. J Thorac Oncol. 2013;8(6):783–7.

    Article  PubMed  CAS  Google Scholar 

  224. Zimling ZG, Sorensen JB, Gerds TA, Bech C, Andersen CB, Santoni-Rugiu E. A biomarker profile for predicting efficacy of cisplatin-vinorelbine therapy in malignant pleural mesothelioma. Cancer Chemother Pharmacol. 2012;70(5):743–54.

    Article  PubMed  CAS  Google Scholar 

  225. Ting S, Mairinger FD, Hager T, Welter S, Eberhardt WE, Wohlschlaeger J, Schmid KW, Christoph DC. ERCC1, MLH1, MSH2, MSH6, and betaIII-tubulin: resistance proteins associated with response and outcome to platinum-based chemotherapy in malignant pleural mesothelioma. Clin Lung Cancer. 2013;14(5):558–67. e553

    Article  PubMed  CAS  Google Scholar 

  226. Palumbo C, Bei R, Procopio A, Modesti A. Molecular targets and targeted therapies for malignant mesothelioma. Curr Med Chem. 2008;15(9):855–67.

    Article  PubMed  CAS  Google Scholar 

  227. Zalcman G, Mazieres J, Margery J, Greillier L, Audigier-Valette C, Moro-Sibilot D, Molinier O, Corre R, Monnet I, Gounant V, et al. Bevacizumab for newly diagnosed pleural mesothelioma in the Mesothelioma Avastin Cisplatin Pemetrexed Study (MAPS): a randomised, controlled, open-label, phase 3 trial. Lancet. 2016;387(10026):1405–14.

    Article  PubMed  CAS  Google Scholar 

  228. Suzuki K, Kadota K, Sima CS, Sadelain M, Rusch VW, Travis WD, Adusumilli PS. Chronic inflammation in tumor stroma is an independent predictor of prolonged survival in epithelioid malignant pleural mesothelioma patients. Cancer Immunol Immunother. 2011;60(12):1721–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  229. Campbell NP, Kindler HL. Update on malignant pleural mesothelioma. Semin Respir Crit Care Med. 2011;32(1):102–10.

    Article  PubMed  Google Scholar 

  230. Bongiovanni M, Cassoni P, De Giuli P, Viberti L, Cappia S, Ivaldi C, Chiusa L, Bussolati G. p27(kip1) immunoreactivity correlates with long-term survival in pleural malignant mesothelioma. Cancer. 2001;92(5):1245–50.

    Article  PubMed  CAS  Google Scholar 

  231. Cedres S, Montero MA, Zamora E, Martinez A, Martinez P, Farinas L, Navarro A, Torrejon D, Gabaldon A, Ramon YCS, et al. Expression of Wilms’ tumor gene (WT1) is associated with survival in malignant pleural mesothelioma. Clin Transl Oncol. 2014;16(9):776–82.

    Article  PubMed  CAS  Google Scholar 

  232. Kao SC, Klebe S, Henderson DW, Reid G, Chatfield M, Armstrong NJ, Yan TD, Vardy J, Clarke S, van Zandwijk N, et al. Low calretinin expression and high neutrophil-to-lymphocyte ratio are poor prognostic factors in patients with malignant mesothelioma undergoing extrapleural pneumonectomy. J Thorac Oncol. 2011;6(11):1923–9.

    Article  PubMed  Google Scholar 

  233. Thylen A, Hjerpe A, Martensson G. Hyaluronan content in pleural fluid as a prognostic factor in patients with malignant pleural mesothelioma. Cancer. 2001;92(5):1224–30.

    Article  PubMed  CAS  Google Scholar 

  234. Creaney J, Dick IM, Segal A, Musk AW, Robinson BW. Pleural effusion hyaluronic acid as a prognostic marker in pleural malignant mesothelioma. Lung Cancer. 2013;82(3):491–8.

    Article  PubMed  Google Scholar 

  235. Edwards JG, Swinson DE, Jones JL, Waller DA, O’Byrne KJ. EGFR expression: associations with outcome and clinicopathological variables in malignant pleural mesothelioma. Lung Cancer. 2006;54(3):399–407.

    Article  PubMed  CAS  Google Scholar 

  236. Levallet G, Vaisse-Lesteven M, Le Stang N, Ilg AG, Brochard P, Astoul P, Pairon JC, Bergot E, Zalcman G, Galateau-Salle F. Plasma cell membrane localization of c-MET predicts longer survival in patients with malignant mesothelioma: a series of 157 cases from the MESOPATH Group. J Thorac Oncol. 2012;7(3):599–606.

    Article  PubMed  Google Scholar 

  237. Amatya VJ, Takeshima Y, Aoe K, Fujimoto N, Okamoto T, Yamada T, Kishimoto T, Morimoto C, Inai K. CD9 expression as a favorable prognostic marker for patients with malignant mesothelioma. Oncol Rep. 2013;29(1):21–8.

    Article  PubMed  Google Scholar 

  238. Aoe K, Amatya VJ, Fujimoto N, Ohnuma K, Hosono O, Hiraki A, Fujii M, Yamada T, Dang NH, Takeshima Y, et al. CD26 overexpression is associated with prolonged survival and enhanced chemosensitivity in malignant pleural mesothelioma. Clin Cancer Res. 2012;18(5):1447–56.

    Article  PubMed  CAS  Google Scholar 

  239. Otterstrom C, Soltermann A, Opitz I, Felley-Bosco E, Weder W, Stahel RA, Triponez F, Robert JH, Serre-Beinier V. CD74: a new prognostic factor for patients with malignant pleural mesothelioma. Br J Cancer. 2014;110(8):2040–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  240. Schramm A, Opitz I, Thies S, Seifert B, Moch H, Weder W, Soltermann A. Prognostic significance of epithelial-mesenchymal transition in malignant pleural mesothelioma. Eur J Cardiothorac Surg. 2010;37(3):566–72.

    Article  PubMed  Google Scholar 

  241. Cristaudo A, Foddis R, Vivaldi A, Guglielmi G, Dipalma N, Filiberti R, Neri M, Ceppi M, Paganuzzi M, Ivaldi GP, et al. Clinical significance of serum mesothelin in patients with mesothelioma and lung cancer. Clin Cancer Res. 2007;13(17):5076–81.

    Article  PubMed  CAS  Google Scholar 

  242. Schneider J, Hoffmann H, Dienemann H, Herth FJ, Meister M, Muley T. Diagnostic and prognostic value of soluble mesothelin-related proteins in patients with malignant pleural mesothelioma in comparison with benign asbestosis and lung cancer. J Thorac Oncol. 2008;3(11):1317–24.

    Article  PubMed  Google Scholar 

  243. Cappia S, Righi L, Mirabelli D, Ceppi P, Bacillo E, Ardissone F, Molinaro L, Scagliotti GV, Papotti M. Prognostic role of osteopontin expression in malignant pleural mesothelioma. Am J Clin Pathol. 2008;130(1):58–64.

    Article  PubMed  Google Scholar 

  244. Hollevoet K, Nackaerts K, Gosselin R, De Wever W, Bosquee L, De Vuyst P, Germonpre P, Kellen E, Legrand C, Kishi Y, et al. Soluble mesothelin, megakaryocyte potentiating factor, and osteopontin as markers of patient response and outcome in mesothelioma. J Thorac Oncol. 2011;6(11):1930–7.

    Article  PubMed  Google Scholar 

  245. Creaney J, Dick IM, Meniawy TM, Leong SL, Leon JS, Demelker Y, Segal A, Musk AW, Lee YC, Skates SJ, et al. Comparison of fibulin-3 and mesothelin as markers in malignant mesothelioma. Thorax. 2014;69(10):895–902.

    Article  PubMed  Google Scholar 

  246. Righi L, Cavallo MC, Gatti G, Monica V, Rapa I, Busso S, Albera C, Volante M, Scagliotti GV, Papotti M. Tumor/stromal caveolin-1 expression patterns in pleural mesothelioma define a subgroup of the epithelial histotype with poorer prognosis. Am J Clin Pathol. 2014;141(6):816–27.

    Article  PubMed  Google Scholar 

  247. Edwards JG, Cox G, Andi A, Jones JL, Walker RA, Waller DA, O’Byrne KJ. Angiogenesis is an independent prognostic factor in malignant mesothelioma. Br J Cancer. 2001;85(6):863–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  248. Kao SC, Harvie R, Paturi F, Taylor R, Davey R, Abraham R, Clarke S, Marx G, Cullen M, Kerestes Z, et al. The predictive role of serum VEGF in an advanced malignant mesothelioma patient cohort treated with thalidomide alone or combined with cisplatin/gemcitabine. Lung Cancer. 2012;75(2):248–54.

    Article  PubMed  Google Scholar 

  249. Tabata C, Hirayama N, Tabata R, Yasumitsu A, Yamada S, Murakami A, Iida S, Tamura K, Fukuoka K, Kuribayashi K, et al. A novel clinical role for angiopoietin-1 in malignant pleural mesothelioma. Eur Respir J. 2010;36(5):1099–105.

    Article  PubMed  CAS  Google Scholar 

  250. Righi L, Papotti MG, Ceppi P, Bille A, Bacillo E, Molinaro L, Ruffini E, Scagliotti GV, Selvaggi G. Thymidylate synthase but not excision repair cross-complementation group 1 tumor expression predicts outcome in patients with malignant pleural mesothelioma treated with pemetrexed-based chemotherapy. J Clin Oncol. 2010;28(9):1534–9.

    Article  PubMed  CAS  Google Scholar 

  251. Zucali PA, Giovannetti E, Destro A, Mencoboni M, Ceresoli GL, Gianoncelli L, Lorenzi E, De Vincenzo F, Simonelli M, Perrino M, et al. Thymidylate synthase and excision repair cross-complementing group-1 as predictors of responsiveness in mesothelioma patients treated with pemetrexed/carboplatin. Clin Cancer Res. 2011;17(8):2581–90.

    Article  PubMed  CAS  Google Scholar 

  252. Christoph DC, Asuncion BR, Mascaux C, Tran C, Lu X, Wynes MW, Gauler TC, Wohlschlaeger J, Theegarten D, Neumann V, et al. Folylpoly-glutamate synthetase expression is associated with tumor response and outcome from pemetrexed-based chemotherapy in malignant pleural mesothelioma. J Thorac Oncol. 2012;7(9):1440–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  253. Davidson B. Prognostic factors in malignant pleural mesothelioma. Hum Pathol. 2015;46(6):789–804.

    Article  PubMed  CAS  Google Scholar 

  254. Achatzy R, Beba W, Ritschler R, Worn H, Wahlers B, Macha HN, Morgan JA. The diagnosis, therapy and prognosis of diffuse malignant mesothelioma. Eur J Cardiothorac Surg. 1989;3(5):445–447; discussion 448.

    Article  PubMed  CAS  Google Scholar 

  255. Law MR, Gregor A, Hodson ME, Bloom HJ, Turner-Warwick M. Malignant mesothelioma of the pleura: a study of 52 treated and 64 untreated patients. Thorax. 1984;39(4):255–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  256. Blayney JK, Ceresoli GL, Castagneto B, O’Brien ME, Hasan B, Sylvester R, Rudd R, Steele J, Busacca S, Porta C, et al. Response to chemotherapy is predictive in relation to longer overall survival in an individual patient combined-analysis with pleural mesothelioma. Eur J Cancer. 2012;48(16):2983–92.

    Article  PubMed  Google Scholar 

  257. Own SA, Hillerdal G, Dobra K, Hjerpe A. PP01.05: Early diagnosis by cytology improves survival. In: 13th International Conference of the International Mesothelioma Group, 2016, Birmingham.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katalin Dobra M.D., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dobra, K., Hjerpe, A. (2018). Malignant Mesothelioma. In: Davidson, B., Firat, P., Michael, C. (eds) Serous Effusions. Springer, Cham. https://doi.org/10.1007/978-3-319-76478-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76478-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76477-1

  • Online ISBN: 978-3-319-76478-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics