Skip to main content

Resistive Switching Devices: Mechanism, Performance and Integration

  • Chapter
  • First Online:
Book cover Handbook of Memristor Networks
  • 3239 Accesses

Abstract

Resistive switching devices or memristors are an emerging and greatly potential technology for future information technology, such as internet of things (IoT) and artificial intelligence (AI) . In this chapter, we firstly review the resistive switching mechanisms , since its complex nature involving electronic and ionic kinetics serves as the basics for the applications on device and system levels. Secondly, the performance improvement methods from aspects of material, device and programming are summarized. Finally, we will present the integration technology and point out issues that should be addressed in 2D and 3D architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Waser, R., Dittmann, R., Staikov, G., Szot, K.: Redox-based resistive switching memories–nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632–2663 (2009)

    Article  Google Scholar 

  2. Schindler, C., Weides, M., Kozicki, M.N., Waser, R.: Low current resistive switching in Cu–SiO2 cells. Appl. Phys. Lett. 92, 122910-122910-3 (2008)

    Article  Google Scholar 

  3. Terabe, K., Hasegawa, T., Nakayama, T., Aono, M.: Quantized conductance atomic switch. Nature 433 (2005)

    Article  Google Scholar 

  4. Tappertzhofen, S., Mundelein, H., Valov, I., Waser, R.: Nanoionic transport and electrochemical reactions in resistively switching silicon dioxide. Nanoscale 4, 3040–3043 (2012)

    Article  Google Scholar 

  5. Budevski, E., Staikov, G., Lorenz, W.J.: Electrocrystallization: nucleation and growth phenomena. Electrochim. Acta 45, 2559–2574 (2000)

    Article  Google Scholar 

  6. Liang, L., Qi, Y., Xue, F., Bhattacharya, S., Harris, S.J., Chen, L.Q.: Nonlinear phase-field model for electrode-electrolyte interface evolution. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 86, 051609 (2012)

    Article  Google Scholar 

  7. Liang, L., Chen, L.Q.: Nonlinear phase field model for electrodeposition in electrochemical systems. Appl. Phys. Lett. 105, 1457–1459 (2014)

    Google Scholar 

  8. Hasegawa, T., Terabe, K., Tsuruoka, T., Aono, M.: Atomic switch: atom/ion movement controlled devices for beyond von-neumann computers. Adv. Mater. 24, 252–267 (2012)

    Article  Google Scholar 

  9. Hollmer, S., Gilbert, N., Dinh, J., Lewis, D., Derhacobian, N.: A high performance and low power logic CMOS compatible embedded 1 Mb CBRAM non-volatile macro. In: 2011 3rd IEEE International Memory Workshop (IMW), pp. 1–4 (2011)

    Google Scholar 

  10. Choi, S.J., Park, G.S., Kim, K.H., Cho, S., Yang, W.Y., Li, X.S., et al.: In situ observation of voltage-induced multilevel resistive switching in solid electrolyte memory. Adv. Mater. 23, 3272–3277 (2011)

    Article  Google Scholar 

  11. Fujii, T., Arita, M., Takahashi, Y., Fujiwara, I.: In situ transmission electron microscopy analysis of conductive filament during solid electrolyte resistance switching. Appl. Phys. Lett. 98, 212104 (2011)

    Article  Google Scholar 

  12. Xu, Z., Bando, Y., Wang, W., Bai, X., Golberg, D.: Real-time in situ HRTEM-resolved resistance switching of Ag2S nanoscale ionic conductor. ACS Nano 4, 2515–2522 (2010)

    Article  Google Scholar 

  13. Li, Y., Long, S., Liu, Q., Lv, H., Liu, M.: Resistive switching performance improvement via modulating nanoscale conductive filament, involving the application of two-dimensional layered materials. Small, 18 Apr 2017

    Google Scholar 

  14. Zhao, X., Liu, S., Niu, J., Liao, L., Liu, Q., Xiao, X., et al.: Confining cation injection to enhance CBRAM performance by nanopore graphene layer. Small 13, 1603948 (2017)

    Article  Google Scholar 

  15. Liu, Q., Long, S., Lv, H., Wang, W., Niu, J., Huo, Z., et al.: Controllable growth of nanoscale conductive filaments in solid-electrolyte-based reram by using a metal nanocrystal covered bottom electrode. ACS Nano 4, 6162–6168 (2010)

    Article  Google Scholar 

  16. Sun, H., Liu, Q., Li, C., Long, S., Lv, H., Bi, C., et al.: Direct observation of conversion between threshold switching and memory switching induced by conductive filament morphology. Adv. Func. Mater. 24, 5679–5686 (2014)

    Article  Google Scholar 

  17. Liu, S., Lu, N., Zhao, X., Xu, H., Banerjee, W., Lv, H., et al.: Eliminating negative-set behavior by suppressing nanofilament overgrowth in cation-based memory. Adv. Mater. 28, 10623–10629 (2016)

    Article  Google Scholar 

  18. Wang, Y., Liu, Q., Long, S., Wang, W., Wang, Q., Zhang, M., et al.: Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications. Nanotechnology 21, 045202 (2010)

    Article  Google Scholar 

  19. Liu, Q., Sun, J., Lv, H., Long, S., Yin, K., Wan, N., et al.: Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv. Mater. 24, 1844–1849 (2012)

    Article  Google Scholar 

  20. Nayak, A., Wang, Q., Itoh, Y., Tsuruoka, T., Hasegawa, T., Boodhoo, L., et al.: Position detection and observation of a conducting filament hidden under a top electrode in a Ta2O5-based atomic switch. Nanotechnology 26, 145702 (2015)

    Article  Google Scholar 

  21. Busby, Y., Nau, S., Sax, S., List-Kratochvil, E.J.W., Novak, J., Banerjee, R., et al.: Direct observation of conductive filament formation in Alq3 based organic resistive memories. J. Appl. Phys. 118, 075501 (2015)

    Article  Google Scholar 

  22. Han, S.-T., Hu, L., Wang, X., Zhou, Y., Zeng, Y.-J., Ruan, S., et al.: Black phosphorus quantum dots with tunable memory properties and multilevel resistive switching characteristics. Adv. Sci. 4, 1600435 (2017)

    Article  Google Scholar 

  23. Son, D.I., Kim, T.W., Shim, J.H., Jung, J.H., Lee, D.U., Lee, J.M., et al.: Flexible organic bistable devices based on graphene embedded in an insulating poly(methyl methacrylate) polymer layer. Nano Lett. 10, 2441–2447 (2010)

    Article  Google Scholar 

  24. Son, D.I., Shim, J.H., Park, D.H., Jung, J.H., Lee, J.M., Park, W.I., et al.: Polymer-ultrathin graphite sheet-polymer composite structured flexible nonvolatile bistable organic memory devices. Nanotechnology 22, 295203 (2011)

    Article  Google Scholar 

  25. Jo, S.H., Kim, K.-H., Lu, W.: High-density crossbar arrays based on a Si memristive system. Nano Lett. 9, 870–874 (2009)

    Article  Google Scholar 

  26. Jo, S.H., Lu, W.: Nonvolatile resistive switching devices based on nanoscale metal/amorphous silicon/crystalline silicon junctions. In: MRS Proceedings, vol. 997 (2011)

    Google Scholar 

  27. Hyun, J.S., Wei, L.: Ag/a-Si:H/c-Si resistive switching nonvolatile memory devices. In: 2006 IEEE Nanotechnology Materials and Devices Conference, pp. 116–117 (2006)

    Google Scholar 

  28. Li, M., Zhuge, F., Zhu, X., Yin, K., Wang, J., Liu, Y., et al.: Nonvolatile resistive switching in metal/La-doped BiFeO3/Pt sandwiches. Nanotechnology 21, 425202 (2010)

    Article  Google Scholar 

  29. Shi, T., Yang, R., Guo, X.: Coexistence of analog and digital resistive switching in BiFeO3-based memristive devices. Solid State Ionics 296, 114–119 (2016)

    Article  Google Scholar 

  30. Qian, K., Tay, R.Y., Nguyen, V.C., Wang, J., Cai, G., Chen, T., et al.: Hexagonal boron nitride thin film for flexible resistive memory applications. Adv. Func. Mater. 26, 2176–2184 (2016)

    Article  Google Scholar 

  31. Shi, T., Chen, Y., Guo, X.: Defect chemistry of alkaline earth metal (Sr/Ba) titanates. Prog. Mater Sci. 80, 77–132 (2016)

    Article  Google Scholar 

  32. Waser, R.: Bulk conductivity and defect chemistry of acceptor-doped strontium titanate in the quenched state. J. Am. Ceram. Soc. 74, 1934–1940 (1991)

    Article  Google Scholar 

  33. Wong, H.S.P., Lee, H.-Y., Yu, S., Chen, Y.-S., Wu, Y., Chen, P.-S., et al.: Metal-oxide RRAM. In: Proceedings of the IEEE, vol. 100, pp. 1951–1970, Jun 2012

    Google Scholar 

  34. Fujii, T., Kawasaki, M., Sawa, A., Akoh, H., Kawazoe, Y., Tokura, Y.: Hysteretic current-voltage characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi0.99Nb0.01O3. Appl. Phys. Lett. 86, 2749 (2005)

    Google Scholar 

  35. Sawa, A., Fujii, T., Kawasaki, M., Tokura, Y.: Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti∕Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 85, 4073–4075 (2004)

    Article  Google Scholar 

  36. Baek, K., Park, S., Park, J., Kim, Y.-M., Hwang, H., Oh, S.H.: In situ TEM observation on the interface-type resistive switching by electrochemical redox reactions at a TiN/PCMO interface. Nanoscale 9, 582–593 (2017)

    Article  Google Scholar 

  37. Fujii, T., Kawasaki, M., Sawa, A., Kawazoe, Y., Akoh, H., Tokura, Y.: Electrical properties and colossal electroresistance of heteroepitaxial SrRuO3/SrTi1−xNbxO3 (0.0002 < x < 0.02) Schottky junctions. Phys. Rev. B, 75, 5101(1–7) (2007)

    Google Scholar 

  38. Janousch, M., Meijer, G.I., Staub, U., Delley, B., Karg, S.F., Andreasson, B.P.: Role of oxygen vacancies in Cr-doped SrTiO3 for resistance-change memory. Adv. Mater. 19, 2232 (2007)

    Article  Google Scholar 

  39. Kalaev, D., Yalon, E., Riess, I.: On the direction of the conductive filament growth in valence change memory devices during electroforming. Solid State Ionics 276, 9–17 (2015)

    Article  Google Scholar 

  40. Kwon, D.-H., Kim, K.M., Jang, J.H., Jeon, J.M., Lee, M.H., Kim, G.H., et al.: Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat. Nanotechnol. 5, 148–153 (2010)

    Article  Google Scholar 

  41. Szot, K., Speier, W., Bihlmayer, G., Waser, R.: Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat. Mater. 5 (2006)

    Article  Google Scholar 

  42. Nail, C., Molas, G., Blaise, P., Piccolboni, G., Sklenard, B., Cagli, B., et al.: Understanding RRAM endurance, retention and window margin trade-off using experimental results and simulations. In: 2016 IEEE International Electron Devices Meeting (IEDM), pp. 4.5.1–4.5.4 (2016)

    Google Scholar 

  43. Shi, T., Yin, X.-B., Yang, R., Guo, X.: Pt/WO3/FTO memristive devices with recoverable pseudo-electroforming for time-delay switches in neuromorphic computing. Phys. Chem. Chem. Phys. 18, 9338–9343 (2016)

    Article  Google Scholar 

  44. Lai, Y.-C., Wang, Y.-X., Huang, Y.-C., Lin, T.-Y., Hsieh, Y.-P., Yang, Y.-J., et al.: Rewritable, moldable, and flexible sticker-type organic memory on arbitrary substrates. Adv. Func. Mater. 24, 1430–1438 (2014)

    Article  Google Scholar 

  45. Khurana, G., Misra, P., Katiyar, R.S.: Multilevel resistive memory switching in graphene sandwiched organic polymer heterostructure. Carbon 76, 341–347 (2014)

    Article  Google Scholar 

  46. Yang, Y., Yuan, G., Yan, Z., Wang, Y., Lu, X., Liu, J.M.: Flexible, semitransparent, and inorganic resistive memory based on BaTi0.95 Co0.05O3 film. Adv. Mater. 27 Apr 2017

    Google Scholar 

  47. Pan, C., Ji, Y., Xiao, N., Hui, F., Tang, K., Guo, Y., et al.: Coexistence of grain-boundaries-assisted bipolar and threshold resistive switching in multilayer hexagonal boron nitride. Adv. Func. Mater. 27, 1604811 (2017)

    Article  Google Scholar 

  48. Yun, D.Y., Park, H.M., Kim, S.W., Kim, S.W., Kim, T.W.: Enhancement of memory margins for stable organic bistable devices based on graphene-oxide layers due to embedded CuInS2 quantum dots. Carbon 75, 244–248 (2014)

    Article  Google Scholar 

  49. Wang, C., He, W., Tong, Y., Zhang, Y., Huang, K., Song, L., et al.: Memristive devices with highly repeatable analog states boosted by graphene quantum dots. Small, 15 Mar 2017

    Google Scholar 

  50. Shinde, S.M., Kalita, G., Tanemura, M.: Fabrication of poly(methyl methacrylate)-MoS2/graphene heterostructure for memory device application. J. Appl. Phys. 116 (2014)

    Article  Google Scholar 

  51. Xu, X.-Y., Yin, Z.-Y., Xu, C.-X., Dai, J., Hu, J.-G.: Resistive switching memories in MoS2 nanosphere assemblies. Appl. Phys. Lett. 104, 033504 (2014)

    Article  Google Scholar 

  52. Hao, C., Wen, F., Xiang, J., Yuan, S., Yang, B., Li, L., et al.: Liquid-exfoliated black phosphorous nanosheet thin films for flexible resistive random access memory applications. Adv. Func. Mater. (2016)

    Google Scholar 

  53. Standley, B., Bao, W., Zhang, H., Bruck, J., Lau, C.N., Bockrath, M.: Graphene-based atomic-scale switches. Nano Lett. 8, 3345–3349 (2008)

    Article  Google Scholar 

  54. Li, Y., Sinitskii, A., Tour, J.M.: Electronic two-terminal bistable graphitic memories. Nat. Mater. 7, 966–971 (2008)

    Article  Google Scholar 

  55. Hui, F., Grustan-Gutierrez, E., Long, S., Liu, Q., Ott, A.K., A. Ferrari, C., et al.: Graphene and related materials for resistive random access memories. Adv. Electron. Mater. 1600195 (2017)

    Google Scholar 

  56. Yao, J., Lin, J., Dai, Y., Ruan, G., Yan, Z., Li, L., et al.: Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene. Nat. Commun. 3, 1101 (2012)

    Article  Google Scholar 

  57. Rani, J.R., Oh, S.-I., Woo, J.M., Jang, J.-H.: Low voltage resistive memory devices based on graphene oxide–iron oxide hybrid. Carbon 94, 362–368 (2015)

    Article  Google Scholar 

  58. Chien, W.C., Chen, Y.R., Chen, Y.C., Chuang, A.T.H., Lee, F.M., Lin, Y.Y., et al.: A forming-free WOx resistive memory using a novel self-aligned field enhancement feature with excellent reliability and scalability. In: Proceedings of the 2010 International Electron Devices Meeting: December 6–8 2010; San Francisco, USA, IEEE, New York (2010)

    Google Scholar 

  59. Kim, H.J., Yoon, K.J., Park, T.H., Kim, H.J., Kwon, Y.J., Shao, X.L., et al.: Filament shape dependent reset behavior governed by the interplay between the electric field and thermal effects in the Pt/TiO2/Cu electrochemical metallization device. Adv. Electron. Mater. 3, 1600404 (2017)

    Article  Google Scholar 

  60. Chang, S.H., Lee, J.S., Chae, S.C., Lee, S.B., Liu, C., Kahng, B., et al.: Occurrence of both unipolar memory and threshold resistance switching in a NiO film. Phys. Rev. Lett. 102, 026801 (2009)

    Article  Google Scholar 

  61. Hsiung, C.P., Liao, H.W., Gan, J.Y., Wu, T.B., Hwang, J.C., Chen, F., et al.: Formation and instability of silver nanofilament in Ag-based programmable metallization cells. ACS Nano 4, 5414–5420 (2010)

    Article  Google Scholar 

  62. Wang, Z., Joshi, S., Savel’ev, S.E., Jiang, H., Midya, R., Lin, P., et al.: Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. vol. Advance online publication (2016)

    Google Scholar 

  63. Liu, Q., Guan, W., Long, S., Jia, R., Liu, M., Chen, J.: Resistive switching memory effect of ZrO films with Zr+ implanted. Appl. Phys. Lett. 92, 012117 (2008)

    Article  Google Scholar 

  64. de Boer, R.W.I., Morpurgo, A.F.: Influence of surface traps on space-charge limited current. Phys. Rev. B 72 (2005)

    Google Scholar 

  65. Kim, D.S., Kim, Y.H., Lee, C.E., Kim, Y.T.: Colossal electroresistance mechanism in a Au/Pr0.7Ca0.3MnO3/Pt sandwich structure: evidence for a mott transition. Phys. Rev. B. 74 (2006)

    Google Scholar 

  66. Fors, R., Khartsev, S.I., Grishin, A.M.: Giant resistance switching in metal-insulator-manganite junctions: evidence for Mott transition. Phys. Rev. B. 71, 45305 (2005)

    Google Scholar 

  67. Meijer, G.I., Staub, U., Janousch, M., Johnson, S.L., Delley, B., Neisius, T.: Valence states of Cr and the insulator-to-metal transition in Cr-doped SrTiO3. Phys. Rev. B. 72, 5102 (2005)

    Google Scholar 

  68. Yang, C.H., Seidel, J., Kim, S.Y., Rossen, P.B., Yu, P., Gajek, M., et al.: Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. Nat. Mater. 8, 485–493 (2009)

    Article  Google Scholar 

  69. Rozenberg, M.J., Inoue, I.H., Sánchez, M.J.: Strong electron correlation effects in nonvolatile electronic memory devices. Appl. Phys. Lett. 88, 033510 (2006)

    Article  Google Scholar 

  70. Rozenberg, M.J., Inoue, I.H., Sánchez, M.J.: Nonvolatile memory with multilevel switching: a basic model. Phys. Rev. Lett. 92, 178302 (2004)

    Article  Google Scholar 

  71. Jeong, D.S., Hwang, C.S.: Tunneling-assisted Poole-Frenkel conduction mechanism in HfO2 thin films. J. Appl. Phys. 98, 113701 (2005)

    Article  Google Scholar 

  72. Chih-Yi, L., Pei-Hsun, W., Wang, A., Wen-Yueh, J., Jien-Chen, Y., Kuang-Yi, C., et al.: Bistable resistive switching of a sputter-deposited Cr-doped SrZrO3 memory film. IEEE Electron Device Lett. 26, 351–353 (2005)

    Article  Google Scholar 

  73. Chiu, F.-C.: A review on conduction mechanisms in dielectric films. Adv. Mater. Sci. Eng. 2014, 1–18 (2014)

    Google Scholar 

  74. Meyer, R., Contreras, J.R., Petraru, A., Kohlstedt, H.: On a novel ferro resistive random access memory (FRRAM): basic model and first experiments. Integr. Ferroelectr. 64, 77–88 (2004)

    Article  Google Scholar 

  75. Yao, L., Inkinen, S., van Dijken, S.: Direct observation of oxygen vacancy-driven structural and resistive phase transitions in La2/3Sr1/3MnO3. Nat. Commun. 8, 14544 (2017)

    Article  Google Scholar 

  76. Wong, H.S.P., Raoux, S., Kim, S., Liang, J., Reifenberg, J.P., Rajendran, B., et al.: Phase change memory. Proc. IEEE 98, 2201–2227 (2010)

    Article  Google Scholar 

  77. Aga, F.G., Woo, J., Lee, S., Song, J., Park, J., Park, J., et al.: Retention modeling for ultra-thin density of Cu-based conductive bridge random access memory (CBRAM). AIP Adv. 6, 025203 (2016)

    Article  Google Scholar 

  78. Chen, Y.Y., Degraeve, R., Govoreanu, B., Clima, S., Goux, L., Fantini, A., et al.: Postcycling LRS retention analysis in HfO2/Hf RRAM 1T1R device. IEEE Electron Device Lett. 34, 626–628 (2013)

    Article  Google Scholar 

  79. Chai, Z., Ma, J., Zhang, W., Govoreanu, B., Simoen, E., Zhang, J.F., et al.: RTN-based defect tracking technique: experimentally probing the spatial and energy profile of the critical filament region and its correlation with HfO2 RRAM switching operation and failure mechanism. Paper presented at the 2016 IEEE Symposium on VLSI Technology (2016)

    Google Scholar 

  80. Guan, W., Liu, M., Long, S., Liu, Q., Wang, W.: On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt. Appl. Phys. Lett. 93, 223506 (2008)

    Article  Google Scholar 

  81. Guan, W., Long, S., Liu, Q., Liu, M., Wang, W.: Nonpolar nonvolatile resistive switching in Cu doped ZrO2. IEEE Electron Device Lett. 29, 434–437 (2008)

    Article  Google Scholar 

  82. Liu, Q., Guan, W., Long, S., Liu, M., Zhang, S., Wang, Q., et al.: Resistance switching of Au-implanted-ZrO2 film for nonvolatile memory. J. Appl. Phys. 104, 114514 (2008)

    Article  Google Scholar 

  83. Liu, Q., Dou, C., Wang, Y., Long, S., Wang, W., Liu, M., et al.: Formation of multiple conductive filaments in the Cu/ZrO2:Cu/Pt device. Appl. Phys. Lett. 95, 023501 (2009)

    Article  Google Scholar 

  84. Liu, Q., Long, S., Wang, W., Zuo, Q., Zhang, S., Chen, J., et al.: Improvement of resistive switching properties in ZrO2-based ReRAM with implanted Ti ions. IEEE Electron Device Letters 30, 1335–1337 (2009)

    Article  Google Scholar 

  85. Zhao, L., Park, S.-G., Magyari-Köpe, B., Nishi, Y.: Dopant selection rules for desired electronic structure and vacancy formation characteristics of TiO2 resistive memory. Appl. Phys. Lett. 102, 083506 (2013)

    Article  Google Scholar 

  86. Tan, T., Guo, T., Liu, Z.: Au doping effects in HfO2-based resistive switching memory. J. Alloy. Compd. 610, 388–391 (2014)

    Article  Google Scholar 

  87. Qiang, Z., Maoxiu, Z., Wei, Z., Qi, L., Xiaofeng, L., Ming, L., et al.: Effects of interaction between defects on the uniformity of doping HfO2-based RRAM: a first principle study. J. Semicond. 34, 032001 (2013)

    Article  Google Scholar 

  88. Tsunoda, K., Kinoshita, K., Noshiro, H., Yamazaki, Y., Iizuka, T., Ito, Y., et al.: Low power and high speed switching of Ti-doped NiO ReRAM under the unipolar voltage source of less than 3 V

    Google Scholar 

  89. Tan, T., Guo, T., Chen, X., Li, X., Liu, Z.: Impacts of Au-doping on the performance of Cu/HfO2/Pt RRAM devices. Appl. Surf. Sci. 317, 982–985 (2014)

    Article  Google Scholar 

  90. Syu, Y.-E., Chang, T.-C., Tsai, T.-M., Chang, G.-W., Chang, K.-C., Tai, Y.-H., et al.: Silicon introduced effect on resistive switching characteristics of WOX thin films. Appl. Phys. Lett. 100, 022904 (2012)

    Article  Google Scholar 

  91. Sun, B., Zhang, X., Zhou, G., Zhang, C., Li, P., Xia, Y., et al.: Effect of Cu ions assisted conductive filament on resistive switching memory behaviors in ZnFe2O4-based devices. J. Alloy. Compd. 694, 464–470 (2017)

    Article  Google Scholar 

  92. Zhuge, F., Peng, S., He, C., Zhu, X., Chen, X., Liu, Y., et al.: Improvement of resistive switching in Cu/ZnO/Pt sandwiches by weakening the randomicity of the formationrupture of Cu filaments. Nanotechnology 22, 275204 (2011)

    Article  Google Scholar 

  93. Mondal, S., Chen, H.-Y., Her, J.-L., Ko, F.-H., Pan, T.-M.: Effect of Ti doping concentration on resistive switching behaviors of Yb2O3 memory cell. Appl. Phys. Lett. 101, 083506 (2012)

    Article  Google Scholar 

  94. Lv, H., Wan, H., Tang, T.: Improvement of resistive switching uniformity by introducing a thin GST interface layer. IEEE Electron Device Lett. 31, 978–980 (2010)

    Article  Google Scholar 

  95. Yoon, J., Choi, H., Lee, D., Park, J.B., Lee, J., Seong, D.J., et al.: Excellent switching uniformity of Cu-doped MoOx/GdOx bilayer for nonvolatile memory applications. IEEE Electron Device Lett. 30, 457–459 (2009)

    Article  Google Scholar 

  96. Likharev, K.K.: Layered tunnel barriers for nonvolatile memory devices. Appl. Phys. Lett. 73, 2137–2139 (1998)

    Article  Google Scholar 

  97. Inoue, I.H., Yasuda, S., Akinaga, H., Takagi, H.: Nonpolar resistance switching of metal binary-transition-metal oxides metal sandwiches Homogeneous inhomogeneous transition of current distribution. Phys. Rev. B 77, 035105 (2008)

    Article  Google Scholar 

  98. Guan, W., Long, S., Liu, M., Liu, Q., Hu, Y., Li, Z., et al.: Modeling of retention characteristics for metal and semiconductor nanocrystal memories. Solid-State Electron. 51, 806–811 (2007)

    Article  Google Scholar 

  99. Guan, W., Long, S., Liu, M., Li, Z., Hu, Y., Liu, Q.: Fabrication and charging characteristics of MOS capacitor structure with metal nanocrystals embedded in gate oxide. J. Phys. D Appl. Phys. 40, 2754–2758 (2007)

    Article  Google Scholar 

  100. Tsai, Y.-T., Chang, T.-C., Lin, C.-C., Chen, S.-C., Chen, C.-W., Sze, S.M., et al.: Influence of nanocrystals on resistive switching characteristic in binary metal oxides memory devices. Electrochem. Solid-State Lett. 14, H135–H138 (2011)

    Article  Google Scholar 

  101. Wang, Z.Q., Xu, H.Y., Zhang, L., Li, X.H., Ma, J.G., Zhang, X.T., et al.: Performance improvement of resistive switching memory achieved by enhancing local-electric-field near electromigrated Ag-nanoclusters. Nanoscale 5, 4490 (2013)

    Article  Google Scholar 

  102. Bousoulas, P., Stathopoulos, S., Tsialoukis, D., Tsoukalas, D.: Low-power and highly uniform 3-b multilevel switching in forming free TiO2−x-based RRAM with embedded Pt nanocrystals. IEEE Electron Device Lett. 37, 874–877 (2016)

    Article  Google Scholar 

  103. Sun, H., Lv, H., Liu, Q., Long, S., Wang, M., Xie, H., et al.: Overcoming the dilemma between RESET current and data retention of RRAM by lateral dissolution of conducting filament. IEEE Electron Device Lett. 34, 873–875 (2013)

    Article  Google Scholar 

  104. Xie, F.-Q., Nittler, L., Obermair, C., Schimmel, T.: Gate-controlled atomic quantum switch. Phys. Rev. Lett. 93, 128303 (2004)

    Article  Google Scholar 

  105. Xia, Q., Pickett, M.D., Yang, J.J., Li, X., Wu, W., Medeiros-Ribeiro, G., et al.: Two- and three-terminal resistive switches nanometer-scale memristors and memistors. Adv. Func. Mater. 21, 2660–2665 (2011)

    Article  Google Scholar 

  106. Banno, N., Sakamoto, T., Hasegawa, T., Terabe, K., Aono, M.: Effect of ion diffusion on switching voltage of solid-electrolyte nanometer switch. Jpn. J. Appl. Phys. 45, 3666–3668 (2006)

    Article  Google Scholar 

  107. Tian, H., Zhao, H., Wang, X.-F., Xie, Q.-Y., Chen, H.-Y., Mohammad, M.A., et al.: In situ tuning of switching window in a gate-controlled bilayer graphene-electrode resistive memory device. Adv. Mater. 27, 7767–7774 (2015)

    Article  Google Scholar 

  108. Sangwan, V.K., Jariwala, D., Kim, I.S., Chen, K.-S., Marks, T.J., Lauhon, L.J., et al.: Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. Nat. Nanotechnol. 10, 403–406 (2015)

    Article  Google Scholar 

  109. Zhu, L.Q., Wan, C.J., Guo, L.Q., Shi, Y., Wan, Q.: Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun. 5, 3158 (2014)

    Article  Google Scholar 

  110. Wang, X., Xie, W., Xu, J.-B.: Graphene based non-volatile memory devices. Adv. Mater. 26, 5496–5503 (2014)

    Article  Google Scholar 

  111. Porro, S., Accornero, E., Pirri, C.F., Ricciardi, C.: Memristive devices based on graphene oxide. Carbon 85, 383–396 (2015)

    Article  Google Scholar 

  112. He, C., Shi, Z., Zhang, L., Yang, W., Yang, R., Shi, D., et al.: Multilevel resistive switching in planar graphene/SiO2 nanogap structures. ACS Nano 6, 4214–4221 (2012)

    Article  Google Scholar 

  113. He, C., Li, J., Wu, X., Chen, P., Zhao, J., Yin, K., et al.: Tunable electroluminescence in planar graphene/SiO2 memristors. Adv. Mater. 25, 5593–5598 (2013)

    Article  Google Scholar 

  114. Bai, Y., Wu, H., Wang, K., Wu, R., Song, L., Li, T., et al.: Stacked 3D RRAM array with graphene/CNT as edge electrodes. Sci. Rep. 5, 13785 (2015)

    Article  Google Scholar 

  115. Lee, S., Sohn, J., Jiang, Z., Chen, H.-Y., Wong, H.-S.P.: Metal oxide-resistive memory using graphene-edge electrodes. Nat. Commun. 6, 8407 (2015)

    Article  Google Scholar 

  116. Zhang, H., Bao, W., Zhao, Z., Huang, J.-W., Standley, B., Liu, G., et al.: Visualizing electrical breakdown and ON/OFF states in electrically switchable suspended graphene break junctions. Nano Lett. 12, 1772–1775 (2012)

    Article  Google Scholar 

  117. Zhao, H., Tu, H., Wei, F., Du, J.: Highly transparent dysprosium oxide-based RRAM with multilayer graphene electrode for low-power nonvolatile memory application. IEEE Trans. Electron Devices 61, 1388–1393 (2014)

    Article  Google Scholar 

  118. He, C.L., Zhuge, F., Zhou, X.F., Li, M., Zhou, G.C., Liu, Y.W., et al.: Nonvolatile resistive switching in graphene oxide thin films. Appl. Phys. Lett. 95, 232101 (2009)

    Article  Google Scholar 

  119. Liu, G., Chen, Y., Li, R.-W., Zhang, B., Kang, E.-T., Wang, C., et al.: Resistance-switchable graphene oxide-polymer nanocomposites for molecular electronics. Chem. Electro. Chem. 1, 514–519 (2014)

    Google Scholar 

  120. Liu, J., Yin, Z., Cao, X., Zhao, F., Wang, L., Huang, W., et al.: Fabrication of flexible, all-reduced graphene oxide non-volatile memory devices. Adv. Mater. 25, 233–238 (2013)

    Article  Google Scholar 

  121. Zhuge, F., Fu, B., Cao, H.: Advances in resistive switching memories based on graphene oxide. New Prog. Graphene Res. 7, 185–206 (2013)

    Google Scholar 

  122. Yin, Z., Zeng, Z., Liu, J., He, Q., Chen, P., Zhang, H.: Memory devices using a mixture of MoS2 and graphene oxide as the active Layer. Small 9, 727–731 (2013)

    Article  Google Scholar 

  123. Puglisi, F.M., Larcher, L., Pan, C., Xiao, N., Shi, Y., Hui, F., et al.: 2D h-BN based RRAM devices. In: 2016 IEEE International Electron Devices Meeting (IEDM), pp. 34.8.1–34.8.4 (2016)

    Google Scholar 

  124. Long, S., Cagli, C., Ielmini, D., Liu, M., Suñé, J.: Analysis and modeling of resistive switching statistics. J. Appl. Phys. 111, 074508 (2012)

    Article  Google Scholar 

  125. Chen, B., Gao, B., Sheng, S.W., Liu, L.F., Liu, X.Y., Chen, Y.S., et al.: A novel operation scheme for oxide-based resistive-switching memory devices to achieve controlled switching behaviors. IEEE Electron Device Lett. 32, 282–284 (2011)

    Article  Google Scholar 

  126. Lian, W., Lv, H., Liu, Q., Long, S., Wang, W., Wang, Y., et al.: Improved resistive switching uniformity in Cu/HfO2/Pt devices by using current sweeping mode. IEEE Electron Device Lett. 32, 1053–1055 (2011)

    Article  Google Scholar 

  127. Kinoshita, K., Tsunoda, K., Sato, Y., Noshiro, H., Yagaki, S., Aoki, M., et al.: Reduction in the reset current in a resistive random access memory consisting of NiOx brought about by reducing a parasitic capacitance. Appl. Phys. Lett. 93, 033506 (2008)

    Article  Google Scholar 

  128. Russo, U., Ielmini, D., Cagli, C., Lacaita, A.L.: Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices. IEEE Trans. Electron Devices 56, 186–192 (2009)

    Article  Google Scholar 

  129. Paskaleva, A., Atanassova, E., Novkovski, N.: Constant current stress of Ti-doped Ta2O5 on nitrided Si. J. Phys. D Appl. Phys. 42, 025105 (2009)

    Article  Google Scholar 

  130. Xu, X., Lv, H., Liu, H., Gong, T., Wang, G., Zhang, M., et al.: Superior retention of low-resistance state in conductive bridge random access memory with single filament formation. IEEE Electron Device Lett. 36, 129–131 (2015)

    Article  Google Scholar 

  131. Liu, H., Lv, H., Yang, B., Xu, X., Liu, R., Liu, Q., et al.: Uniformity improvement in 1T1R RRAM with gate voltage ramp programming. IEEE Electron Device Lett. 35, 1224–1226 (2014)

    Article  Google Scholar 

  132. Lv, H., Xu, X., Sun, P., Liu, H., Luo, Q., Liu, Q., et al.: Atomic view of filament growth in electrochemical memristive elements. Sci. Rep. 5, 13311 (2015)

    Article  Google Scholar 

  133. Wang, G., Long, S., Zhang, M., Li, Y., Xu, X., Liu, H., et al.: Operation methods of resistive random access memory. Sci. China Technol. Sci. 57, 2295–2304 (2014)

    Article  Google Scholar 

  134. Lee, S., Lee, D., Woo, J., Cha, E., Song, J., Park, J., et al.: Selector-less ReRAM with an excellent non-linearity and reliability by the band-gap engineered multi-layer titanium oxide and triangular shaped AC pulse. In: 2013 IEEE International Electron Devices Meeting (IEDM), pp. 10.6.1–10.6.4 (2013)

    Google Scholar 

  135. Wang, G., Long, S., Yu, Z., Zhang, M., Ye, T., Li, Y., et al.: Improving resistance uniformity and endurance of resistive switching memory by accurately controlling the stress time of pulse program operation. Appl. Phys. Lett. 106, 092103 (2015)

    Article  Google Scholar 

  136. Wang, G., Long, S., Yu, Z., Zhang, M., Li, Y., Xu, D., et al.: Impact of program/erase operation on the performances of oxide-based resistive switching memory. Nanoscale Res. Lett. 10, 39 (2015)

    Article  Google Scholar 

  137. Jeong, D.S., Thomas, R., Katiyar, R., Scott, J., Kohlstedt, H., Petraru, A., et al.: Emerging memories: resistive switching mechanisms and current status. Rep. Prog. Phys. 75, 076502 (2012)

    Article  Google Scholar 

  138. Yang, J.J., Strukov, D.B., Stewart, D.R.: Memristive devices for computing. Nat. Nanotechnol. 8, 13–24 (2013)

    Article  Google Scholar 

  139. Zhuang, W., Pan, W., Ulrichn B., Lee, J., Stecker, L., Burmaster, A., et al.: Novel colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM). In: Electron Devices Meeting, 2002. IEDM’02. International, pp. 193–196 (2002)

    Google Scholar 

  140. Sheu, S.-S., Cheng, K.-H., Chang, M.-F., Chiang, P.-C., Lin, W.-P., Lee, H.-Y., et al.: Fast-write resistive RAM (RRAM) for embedded applications. IEEE Des. Test Comput. 28, 64–71 (2011)

    Article  Google Scholar 

  141. Walczyk, C., Walczyk, D., Schroeder, T., Bertaud, T., Sowinska, M., Lukosius, M., et al.: Impact of temperature on the resistive switching behavior of embedded HfO2-based RRAM devices. IEEE Trans. Electron Devices 58, 3124–3131 (2011)

    Article  Google Scholar 

  142. Turkyilmaz, O., Onkaraiah, S., Reyboz, M., Clermidy, F., Hraziia, C.A., Portal, J., et al.: RRAM-based FPGA for “normally off, instantly on” applications”. In: 2012 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), pp. 101–108 (2012)

    Google Scholar 

  143. Mei, C.Y., Shen, W.C., Wu, C.H., Chih, Y.-D., King, Y.-C., Lin, C.J., et al.: 28-nm 2T high-K metal gate embedded RRAM with fully compatible CMOS logic processes. IEEE Electron Device Lett. 34, 1253–1255 (2013)

    Article  Google Scholar 

  144. Wu, S.-C., Lo, C., Hou, T.-H.: Novel two-bit-per-cell resistive-switching memory for low-cost embedded applications. IEEE Electron Device Lett. 32, 1662–1664 (2011)

    Article  Google Scholar 

  145. Fackenthal, R., Kitagawa, M., Otsuka, W., Prall, K., Mills, D., Tsutsui, K., et al.: 19.7 A 16 Gb ReRAM with 200 MB/s write and 1 GB/s read in 27 nm technology. In: 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 338–339 (2014)

    Google Scholar 

  146. Lv, H., Xu, X., Liu, H., Liu, R., Liu, Q., Banerjee, W., et al.: Evolution of conductive filament and its impact on reliability issues in oxide-electrolyte based resistive random access memory. Sci. Rep. 5 (2015)

    Google Scholar 

  147. Xu, X., Lv, H., Li, Y., Liu, H., Wang, M., Liu, Q., et al.: Degradation of gate voltage controlled multilevel storage in one transistor one resistor electrochemical metallization cell. IEEE Electron Device Lett. 36, 555–557 (2015)

    Article  Google Scholar 

  148. Liang, J., Wong, H.-S.P.: Cross-point memory array without cell selectors—device characteristics and data storage pattern dependencies. IEEE Trans. Electron Devices 57, 2531–2538 (2010)

    Article  Google Scholar 

  149. Kügeler, C., Meier, M., Rosezin, R., Gilles, S., Waser, R.: High density 3D memory architecture based on the resistive switching effect. Solid-State Electron. 53, 1287–1292 (2009)

    Article  Google Scholar 

  150. Park, W.Y., Kim, G.H., Seok, J.Y., Kim, K.M., Song, S.J., Lee, M.H., et al.: A Pt/TiO2/Ti Schottky-type selection diode for alleviating the sneak current in resistance switching memory arrays. Nanotechnology 21, 195201 (2010)

    Article  Google Scholar 

  151. Chand, U., Huang, K.-C., Huang, C.-Y., Tseng, T.-Y.: Mechanism of nonlinear switching in HfO2-based crossbar RRAM with inserting large bandgap tunneling barrier layer. IEEE Trans. Electron Devices 62, 3665–3670 (2015)

    Article  Google Scholar 

  152. Kim, S., Zhou, J., Lu, W.D.: Crossbar RRAM arrays: selector device requirements during write operation. IEEE Trans. Electron Devices 61, 2820–2826 (2014)

    Article  Google Scholar 

  153. Huang, Y., Huang, R., Pan, Y., Zhang, L., Cai, Y., Yang, G., et al.: A new dynamic selector based on the bipolar RRAM for the crossbar array application. IEEE Trans. Electron Devices 59, 2277–2280 (2012)

    Article  Google Scholar 

  154. Kim, T.W., Zeigler, D.F., Acton, O., Yip, H.L., Ma, H., Jen, A.K.Y.: All-organic photopatterned one diode-one resistor cell array for advanced organic nonvolatile memory applications. Adv. Mater. 24, 828–833 (2012)

    Article  Google Scholar 

  155. Lee, M.J., Seo, S., Kim, D.C., Ahn, S.E., Seo, D.H., Yoo, I.K., et al.: A low-temperature-grown oxide diode as a new switch element for high-density, nonvolatile memories. Adv. Mater. 19, 73–76 (2007)

    Article  Google Scholar 

  156. Wang, G., Lauchner, A.C., Lin, J., Natelson, D., Palem, K.V., Tour, J.M.: High-performance and low-power rewritable SiOx 1 kbit one diode–one resistor crossbar memory array. Adv. Mater. 25, 4789–4793 (2013)

    Article  Google Scholar 

  157. Huang, J.-J., Tseng, Y.-M., Hsu, C.-W., Hou, T.-H.: Bipolar nonlinear Ni/TiO2/Ni selector for 1S1R crossbar array applications. IEEE Electron Device Lett. 32, 1427–1429 (2011)

    Article  Google Scholar 

  158. Baek, I., Kim, D., Lee, M., Kim, H.-J., Yim, E., Lee, M., et al.: Multi-layer cross-point binary oxide resistive memory (OxRRAM) for post-NAND storage application. In: IEEE International Electron Devices Meeting, 2005. IEDM Technical Digest, pp. 750–753 (2005)

    Google Scholar 

  159. Shin, Y.C., Song, J., Kim, K.M., Choi, B.J., Choi, S., Lee, H.J., et al.: (In,Sn)2O3/TiO2/Pt Schottky-type diode switch for the TiO2 resistive switching memory array. Appl. Phys. Lett. 92, 162904 (2008)

    Article  Google Scholar 

  160. Lee, M.-J., Park, Y., Kang, B.-S., Ahn, S.-E., Lee, C., Kim, K., et al.: 2-stack 1D-1R cross-point structure with oxide diodes as switch elements for high density resistance RAM applications. In: IEEE International Electron Devices Meeting, 2007. IEDM 2007, pp. 771–774 (2007)

    Google Scholar 

  161. Kim, G.H., Lee, J.H., Ahn, Y., Jeon, W., Song, S.J., Seok, J.Y., et al.: 32 × 32 crossbar array resistive memory composed of a stacked Schottky diode and unipolar resistive memory. Adv. Func. Mater. 23, 1440–1449 (2013)

    Article  Google Scholar 

  162. Li, Y., Lv, H., Liu, Q., Long, S., Wang, M., Xie, H., et al.: Bipolar one diode–one resistor integration for high-density resistive memory applications. Nanoscale 5, 4785–4789 (2013)

    Article  Google Scholar 

  163. Son, M., Lee, J., Park, J., Shin, J., Choi, G., Jung, S., et al.: Excellent selector characteristics of nanoscale VO2 for high-density bipolar ReRAM applications. IEEE Electron Device Lett. 32, 1579–1581 (2011)

    Article  Google Scholar 

  164. Cha, E., Woo, J., Lee, D., Lee, S., Song, J., Koo, Y., et al.: Nanoscale (~10 nm) 3D vertical ReRAM and NbO2 threshold selector with TiN electrode. In: 2013 IEEE International Electron Devices Meeting (IEDM), pp. 10.5.1–10.5.4 (2013)

    Google Scholar 

  165. Anbarasu, M., Wimmer, M., Bruns, G., Salinga, M., Wuttig, M.: Nanosecond threshold switching of GeTe6 cells and their potential as selector devices. Appl. Phys. Lett. 100, 143505 (2012)

    Article  Google Scholar 

  166. Hsieh, M.-C., Liao, Y.-C., Chin, Y.-W., Lien, C.-H., Chang, T.-S., Chih, Y.-D., et al.: Ultra high density 3D via RRAM in pure 28 nm CMOS process. In: 2013 IEEE International Electron Devices Meeting (IEDM), pp. 10.3.1–10.3.4 (2013)

    Google Scholar 

  167. Luo, Q., Xu, X., Liu, H., Lv, H., Gong, T., Long, S., et al.: Cu BEOL compatible selector with high selectivity (>107), extremely low off-current (~pA) and high endurance (>1010). In: 2015 IEEE International Electron Devices Meeting (IEDM), pp. 10.4.1–10.4.4 (2015)

    Google Scholar 

  168. Luo, Q., Xu, X., Lv, H., Gong, T., Long, S., Liu, Q., et al.: Highly uniform and nonlinear selection device based on trapezoidal band structure for high density nanocrossbar memory array. Nano Res., 1–8 (2017)

    Google Scholar 

  169. Lee, W., Park, J., Kim, S., Woo, J., Shin, J., Choi, G., et al.: High current density and nonlinearity combination of selection device based on TaOx/TiO2/TaOx structure for one selector–one resistor arrays. ACS Nano 6, 8166–8172 (2012)

    Article  Google Scholar 

  170. Allyn, C., Gossard, A., Wiegmann, W.: New rectifying semiconductor structure by molecular beam epitaxy. Appl. Phys. Lett. 36, 373–376 (1980)

    Article  Google Scholar 

  171. Lee, S., Lee, D., Woo, J., Cha, E., Park, J., Hwang, H.: Engineering oxygen vacancy of tunnel barrier and switching layer for both selectivity and reliability of selector-less ReRAM. IEEE Electron Device Lett. 35, 1022–1024 (2014)

    Article  Google Scholar 

  172. Zuo, Q., Long, S., Liu, Q., Zhang, S., Wang, Q., Li, Y., et al.: Self-rectifying effect in gold nanocrystal-embedded zirconium oxide resistive memory. J. Appl. Phys. 106, 073724 (2009)

    Article  Google Scholar 

  173. Luo, Q., Xu, X., Liu, H., Lv, H., Gong, T., Long, S., et al.: Demonstration of 3D vertical RRAM with ultra low-leakage, high-selectivity and self-compliance memory cells. In: 2015 IEEE International Electron Devices Meeting (IEDM), pp. 10.2.1–10.2.4 (2015)

    Google Scholar 

  174. Xu, X., Luo, Q., Gong, T., Lv, H., Long, S., Liu, Q., et al.: Fully CMOS compatible 3D vertical RRAM with self-aligned self-selective cell enabling sub-5 nm scaling. In: 2016 IEEE Symposium on VLSI Technology, pp. 1–2 (2016)

    Google Scholar 

  175. Liu, W., Tran, X.A., Yu, H., Sun, X.: A self-rectifying unipolar HfOx based RRAM using doped germanium bottom electrode. ECS Solid State Lett. 2, Q35–Q38 (2013)

    Article  Google Scholar 

  176. Lv, H., Li, Y., Liu, Q., Long, S., Li, L., Liu, M.: Self-rectifying resistive-switching device with α-Si/WO3 bilayer. IEEE Electron Device Lett. 34, 229–231 (2013)

    Article  Google Scholar 

  177. Seok, J.Y., Song, S.J., Yoon, J.H., Yoon, K.J., Park, T.H., Kwon, D.E., et al.: A review of three-dimensional resistive switching cross-bar array memories from the integration and materials property points of view. Adv. Func. Mater. 24, 5316–5339 (2014)

    Article  Google Scholar 

  178. Baek, I., Park, C., Ju, H., Seong, D., Ahn, H., Kim, J., et al.: Realization of vertical resistive memory (VRRAM) using cost effective 3D process. In: 2011 IEEE International Electron Devices Meeting (IEDM), pp. 31.8.1–31.8.4 (2011)

    Google Scholar 

  179. Jang, J., Kim, H.-S., Cho, W., Cho, H., Kim, J., Shim, S.I., et al.: Vertical cell array using TCAT (Terabit Cell Array Transistor) technology for ultra high density NAND flash memory. In: 2009 Symposium on VLSI Technology, pp. 192–193 (2009)

    Google Scholar 

  180. Katsumata, R., Kito, M., Fukuzumi, Y., Kido, M., Tanaka, H., Komori, Y., et al.: Pipe-shaped BiCS flash memory with 16 stacked layers and multi-level-cell operation for ultra high density storage devices. In: 2009 Symposium on VLSI Technology, pp. 136–137 (2009)

    Google Scholar 

  181. Park, S.-G., Yang, M.K., Ju, H., Seong, D.-J., Lee, J.M., Kim, E., et al.: A non-linear ReRAM cell with sub-1 μA ultralow operating current for high density vertical resistive memory (VRRAM). In: 2012 IEEE International Electron Devices Meeting (IEDM), pp. 20.8.1–20.8.4 (2012)

    Google Scholar 

  182. Burr, G.W., Shenoy, R.S., Virwani, K., Narayanan, P., Padilla, A., Kurdi, B., et al.: Access devices for 3D crosspoint memory. J. Vac. Sci. Technol. B, Nanotechnol. Microelectron. Mater. Process. Measur. Phenom. 32, 040802 (2014)

    Google Scholar 

  183. Pan, F., Gao, S., Chen, C., Song, C., Zeng, F.: Recent progress in resistive random access memories: materials, switching mechanisms, and performance. Mater. Sci. Engi. R Rep. 83, 1–59 (2014)

    Article  Google Scholar 

  184. Woo, J., Lee, D., Choi, G., Cha, E., Kim, S., Lee, W., et al.: Selector-less RRAM with non-linearity of device for cross-point array applications. Microelectron. Eng. 109, 360–363 (2013)

    Article  Google Scholar 

  185. Luo, Q., Xu, X., Liu, H., Lv, H., Gong, T., Long, S., et al.: Super non-linear RRAM with ultra-low power for 3D vertical nano-crossbar arrays. Nanoscale 8, 15629–15636 (2016)

    Article  Google Scholar 

  186. Li, H., Chen, H.-Y., Chen, Z., Chen, B., Liu, R., Qiu, G., et al.: Write disturb analyses on half-selected cells of cross-point RRAM arrays. In: 2014 IEEE International Reliability Physics Symposium, pp. MY.3.1–MY.3.4 (2014)

    Google Scholar 

  187. Yu, S., Chen, H.-Y., Deng, Y., Gao, B., Jiang, Z., Kang, J., et al.: 3D vertical RRAM-scaling limit analysis and demonstration of 3D array operation. In: 2013 Symposium on VLSI Technology (VLSIT), pp. T158–T159 (2013)

    Google Scholar 

  188. Zhirnov, V.V., Meade, R., Cavin, R.K., Sandhu, G.: Scaling limits of resistive memories. Nanotechnology 22, 254027 (2011)

    Article  Google Scholar 

  189. Sun, P., Li, L., Lu, N., Lv, H., Liu, M., Liu, S.: Physical model for electroforming process in valence change resistive random access memory. J. Comput. Electron. 14, 146–150 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Liu, M., Liu, Q., Lv, H., Long, S. (2019). Resistive Switching Devices: Mechanism, Performance and Integration. In: Chua, L., Sirakoulis, G., Adamatzky, A. (eds) Handbook of Memristor Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-76375-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76375-0_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76374-3

  • Online ISBN: 978-3-319-76375-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics