Skip to main content

Three-Dimensional Crossbar Arrays of Self-rectifying Si/SiO2/Si Memristors

  • Chapter
  • First Online:
Book cover Handbook of Memristor Networks

Abstract

Memristors are promising building blocks for next-generation non-volatile memory, bio-inspired computing, and beyond. Currently, however, they are still suffering from several difficulties that prevent their mass production, including material compatibility and large array operation. In this chapter, we first survey research efforts on using silicon oxide as the switching material, and various ways to integrate selectors with silicon oxide based memristors for large array operation. A self-rectifying unipolar p-Si/SiO2/n-Si memristor is then introduced. The resistive switching is related to the formation and the rupture of a highly localized Si-rich conduction channel, as suggested by both electrical characterization and direct observation using transmission electron microscope (TEM). The self-rectifying behavior is attributed to a p-i-n diode at each junction at low resistance state, and negates the need for an external selector in a passive memristor array. Finally, we discuss three-dimensional crossbars of all-Si based memristors. The effectiveness of the built-in diodes in blocking both intra- and inter-layer sneak path current is confirmed with both simulation and experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hickmott, T.W.: Low-frequency negative resistance in thin anodic oxide films. J. Appl. Phys. 33(9), 2669 (1962)

    Article  Google Scholar 

  2. Simmons, J.G., Verderber, R.R.: New conduction and reversible memory phenomena in thin insulating films. Proc. R. Soc. London. Series A. Math. Phys. Sci. 301(1464), 77–102 (1967)

    Google Scholar 

  3. Dearnaley, G., Stoneham, A.M., Morgan, D.V.: Electrical phenomena in amorphous oxide films. Rep. Prog. Phys. 33(3), 1129 (1970)

    Article  Google Scholar 

  4. Yao, J., Sun, Z., Zhong, L., Natelson, D., Tour, J.M.: Resistive switches and memories from silicon oxide. Nano Lett. 10(10), 4105–4110 (2010)

    Article  Google Scholar 

  5. Mehonic, A., Kenyon, A.J.: Emulating the electrical activity of the neuron using a silicon oxide RRAM cell. Front. Neurosci. 10, 57 (2016)

    Article  Google Scholar 

  6. Mehonic, A., et al.: Structural changes and conductance thresholds in metal-free intrinsic SiOx resistive random access memory. J. Appl. Phys. 117(12), 124505 (2015)

    Article  Google Scholar 

  7. Wang, Y., Chen, K., Qian, X., Fang, Z., Li, W., Xu, J.: The x dependent two kinds of resistive switching behaviors in SiOx films with different x component. Appl. Phys. Lett. 104(1), 012112 (2014)

    Article  Google Scholar 

  8. Yao, J., Zhong, L., Natelson, D., Tour, J.M.: Silicon oxide: a non-innocent surface for molecular electronics and nanoelectronics studies. J. Am. Chem. Soc. 133(4), 941–948 (2011)

    Article  Google Scholar 

  9. Yao, J., et al.: Highly transparent nonvolatile resistive memory devices from silicon oxide and graphene (in eng). Nat. Commun. 3, 1101 (2012)

    Article  Google Scholar 

  10. He, C., et al.: Tunable electroluminescence in planar graphene/SiO2 memristors. Adv. Mater. 25(39), 5593–5598 (2013)

    Article  Google Scholar 

  11. Wang, Y., et al.: Effects of sidewall etching on electrical properties of SiOx resistive random access memory. Appl. Phys. Lett. 103(21), 213505 (2013)

    Article  Google Scholar 

  12. Mehonic, A., et al.: Electrically tailored resistance switching in silicon oxide (in eng). Nanotechnology 23(45), 455201 (2012)

    Article  Google Scholar 

  13. Chang, Y.-F., et al.: Intrinsic SiOx-based unipolar resistive switching memory. I. Oxide stoichiometry effects on reversible switching and program window optimization. J. Appl. Phys. 116(4), 043708 (2014)

    Article  Google Scholar 

  14. Mehonic, A., et al.: Nanoscale transformations in metastable, amorphous, silicon-rich silica. Adv. Mater. 28(34), 7486–7493 (2016)

    Article  Google Scholar 

  15. Li, C., et al.: Three-dimensional crossbar arrays of self-rectifying Si/SiO2/Si memristors. Nat. Commun. 8, 15666 (2017)

    Google Scholar 

  16. Yao, J., Zhong, L., Natelson, D., Tour, J.M.: In situ imaging of the conducting filament in a silicon oxide resistive switch (in eng). Sci. Rep. 2, 242 (2012)

    Article  Google Scholar 

  17. Mehonic, A., et al.: Quantum conductance in silicon oxide resistive memory devices. Sci. Rep. 3, 2708 (2013)

    Article  Google Scholar 

  18. Shim, W., Yao, J., Lieber, C.M.: Programmable resistive-switch nanowire transistor logic circuits. Nano Lett. 14(9), 5430–5436 (2014)

    Article  Google Scholar 

  19. Wang, G., Lauchner, A.C., Lin, J., Natelson, D., Palem, K.V., Tour, J.M.: High-performance and low-power rewritable SiOx 1 kbit one diode-one resistor crossbar memory array. Adv. Mater. 25(34), 4789–4793 (2013)

    Article  Google Scholar 

  20. Ji, L., et al.: Integrated one diode-one resistor architecture in nanopillar SiOx resistive switching memory by nanosphere lithography. Nano Lett. 14(2), 813–818 (2014)

    Article  Google Scholar 

  21. Li, C., Jiang, H., Xia, Q.: Low voltage resistive switching devices based on chemically produced silicon oxide. Appl. Phys. Lett. 103(6), 062104 (2013)

    Article  Google Scholar 

  22. Mark, P., Helfrich, W.: Space-charge-limited currents in organic crystals. J. Appl. Phys. 33(1), 205–215 (1962)

    Article  Google Scholar 

  23. Sze, S.M., Ng, K.K.: Physics of Semiconductor Devices. Wiley, Hoboken (2006)

    Book  Google Scholar 

  24. Yi-Chou, C., et al.: An access-transistor-free (0T/1R) non-volatile resistance random access memory (RRAM) using a novel threshold switching, self-rectifying chalcogenide device. In: Electron Devices Meeting, 2003. IEDM ‘03 Technical Digest. IEEE International, pp. 37.4.1–37.4.4 (2003)

    Google Scholar 

  25. Zuo, Q., et al.: ZrO2-based memory cell with a self-rectifying effect for crossbar WORM memory application. IEEE Electron. Device Lett. 31(4), 344–346 (2010)

    Article  Google Scholar 

  26. Zuo, Q., et al.: Self-rectifying effect in gold nanocrystal-embedded zirconium oxide resistive memory. J. Appl. Phys. 106(7), 073724 (2009)

    Article  Google Scholar 

  27. Dong, Y., Yu, G., McAlpine, M.C., Lu, W., Lieber, C.M.: Si/a-Si core/shell nanowires as nonvolatile crossbar switches. Nano Lett. 8(2), 386–391 (2008)

    Article  Google Scholar 

  28. Jo, S.H., Lu, W.: CMOS compatible nanoscale nonvolatile resistance switching memory. Nano Lett. 8(2), 392–397 (2008)

    Article  Google Scholar 

  29. Kim, K.-H., Hyun Jo, S., Gaba, S., Lu, W.: Nanoscale resistive memory with intrinsic diode characteristics and long endurance. Appl. Phys. Lett. 96(5), 053106 (2010)

    Article  Google Scholar 

  30. Kim, H.-D., Yun, M., Kim, S.: Self-rectifying resistive switching behavior observed in Si3N4-based resistive random access memory devices. J. Alloy. Compd. 651, 340–343 (2015)

    Article  Google Scholar 

  31. Gao, S., et al.: Forming-free and self-rectifying resistive switching of the simple Pt/TaOx/n-Si structure for access device-free high-density memory application. Nanoscale 7(14), 6031–6038 (2015)

    Article  Google Scholar 

  32. Tang, G.S., et al.: Resistive switching with self-rectifying behavior in Cu/SiOx/Si structure fabricated by plasma-oxidation. J. Appl. Phys. 113(24), 244502 (2013)

    Article  Google Scholar 

  33. Dongyi, L., et al.: Investigations of conduction mechanisms of the self-rectifying n+Si-HfO2–Ni RRAM devices. IEEE Trans. Electron Devices 61(7), 2294–2301 (2014)

    Article  Google Scholar 

  34. Tran, X.A., et al.: Self-rectifying and forming-free unipolar HfOx based-high performance RRAM built by fab-avaialbe materials. In: Electron Devices Meeting (IEDM), 2011 IEEE International, pp. 31.2.1–31.2.4 (2011)

    Google Scholar 

  35. Wang, M.J., Gao, S., Zeng, F., Song, C., Pan, F.: Unipolar resistive switching with forming-free and self-rectifying effects in Cu/HfO2/n-Si devices. AIP Adv. 6(2), 025007 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiangfei Xia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, C., Xia, Q. (2019). Three-Dimensional Crossbar Arrays of Self-rectifying Si/SiO2/Si Memristors. In: Chua, L., Sirakoulis, G., Adamatzky, A. (eds) Handbook of Memristor Networks. Springer, Cham. https://doi.org/10.1007/978-3-319-76375-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76375-0_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76374-3

  • Online ISBN: 978-3-319-76375-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics