Skip to main content

Inherent Effects of Single-Particle Confinement

  • Chapter
  • First Online:
Particle Confinement in Penning Traps

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 100))

  • 1026 Accesses

Abstract

In the previous chapter, we have discussed the effects of field imperfections on the motion of a single confined particle in a Penning trap. These effects can in principle be avoided, and can in reality be minimised by careful choice of parameters and of the trap manufacturing details. Here, we will discuss effects that are inherent to the confinement situation and can thus not be avoided even in principle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E.M. Purcell, Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 (1946)

    Article  Google Scholar 

  2. D.F.A. Winters, M. Vogel, D. Segal, R.C. Thompson, Electronic detection of charged particle effects in a Penning trap. J. Phys. B 39, 3131 (2006)

    Article  ADS  Google Scholar 

  3. J.V. Porto, Series solution for the image charge fields in arbitrary cylindrically symmetric Penning traps. Phys. Rev. A 64, 023403 (2001)

    Article  ADS  Google Scholar 

  4. E. Fischbach, N. Nakagawa, Apparatus-dependent contributions to g-2 and other phenomena. Phys. Rev. D 30, 2356 (1984)

    Article  ADS  Google Scholar 

  5. D.G. Boulware, L.S. Brown, T. Lee, Apparatus-dependent contributions to \(g-2\)? Phys. Rev. D 32, 729 (1985)

    Article  ADS  Google Scholar 

  6. R.S. Van Dyck Jr., F.L. Moore, D.L. Farnham, P.B. Schwinberg, Number dependency in the compensated Penning trap. Phys. Rev. A 40, 6308 (1989)

    Article  ADS  Google Scholar 

  7. M. Vogel, W. Quint, Magnetic Moment of the bound electron, in: Fundamental Physics in Particle Traps, Springer Tracts in Modern Physics, vol. 256 (Springer, Heidelberg 2014)

    Google Scholar 

  8. R.S. Van Dyck Jr., S.L. Zafonte, S. Van Liew, D.B. Pinegar, P.B. Schwinberg, Ultraprecise atomic mass measurement of the \(\alpha \) particle and \(^4\)He. Phys. Rev. Lett. 92, 220802 (2004)

    Google Scholar 

  9. C. Roux et al., The trap design of PENTATRAP. Appl. Phys. B 107, 997 (2012)

    Article  ADS  Google Scholar 

  10. D.G. Boulware, L.S. Brown, T. Lee, Apparatus-dependent contributions to \(g-2\)? Phys. Rev. D 32, 729 (1985)

    Article  ADS  Google Scholar 

  11. M.D. Tinkle, S.E. Barlow, Image charge forces inside conducting boundaries. J. Appl. Phys. 90, 1612 (2001)

    Article  ADS  Google Scholar 

  12. G.J. Ketter, Theoretical treatment of miscellaneous frequency-shifts in Penning traps with classical perturbation theory, Ph.D. thesis, University of Heidelberg, 2015

    Google Scholar 

  13. G. Werth, V.N. Gheorghe, F.G. Major, Charged Particle Traps II (Springer, Heidelberg, 2009)

    Book  Google Scholar 

  14. H. Häffner et al., Double Penning trap technique for precise \(g\) factor determinations in highly charged ions. Eur. Phys. J. D 22, 163 (2003)

    Article  ADS  Google Scholar 

  15. F. Köhler et al., The electron mass from g-factor measurements on hydrogen-like carbon \(^{12}\)C\(^{5+}\), J. Phys. B: At. Mol. Opt. Phys. 48 (2015)

    Google Scholar 

  16. J.K. Thompson, S. Rainville, D.E. Pritchard, Cyclotron frequency shifts arising from polarization forces. Nature 430, 58 (2004)

    Article  ADS  Google Scholar 

  17. M. Redshaw et al., Precision mass spectrometry and polarizability shifts with one and two ions in a Penning trap, in TCP 2006, ed. by J. Dilling, M. Comyn, J. Thompson, G. Gwinner (Springer, Berlin, Heidelberg, 2006)

    Google Scholar 

  18. L.S. Brown, G. Gabrielse, Geonium theory: physics of a single electron or ion in a Penning trap. Rev. Mod. Phys. 58, 233 (1986)

    Article  ADS  Google Scholar 

  19. Z. Andelkovic et al., Status of deceleration and laser spectroscopy of highly charged ions at HITRAP. Hyp. Int. 235, 37 (2015)

    Article  ADS  Google Scholar 

  20. D.A. Church, H.G. Dehmelt, Radiative cooling of an electrodynamically contained proton gas. J. Appl. Phys. 40, 3421 (1969)

    Article  ADS  Google Scholar 

  21. G. Gabrielse et al., Precise Matter and Antimatter Tests of the Standard Model, in: Fundamental Physics in Particle Traps, Springer Tracts in Modern Physics, vol. 256 (Springer, Heidelberg 2014)

    Google Scholar 

  22. G. Gabrielse, H. Dehmelt, Observation of inhibited spontaneous emission. Phys. Rev. Lett. 55, 67 (1985)

    Article  ADS  Google Scholar 

  23. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1998)

    MATH  Google Scholar 

  24. L.S. Brown, K. Helmerson, J. Tan, Cyclotron motion in a spherical microwave cavity. Phys. Rev. A. 34, 2638 (1986)

    Article  ADS  Google Scholar 

  25. L.S. Brown, G. Gabrielse, J.N. Tan, K.C.D. Chan, Cyclotron motion in a penning trap microwave cavity. Phys. Rev. A 37, 4163 (1988)

    Article  ADS  Google Scholar 

  26. L.S. Brown, G. Gabrielse, K. Helmerson, J. Tan, Cyclotron motion in a microwave cavity: lifetime and frequency shifts. Phys. Rev. A 32, 3204 (1985)

    Article  ADS  Google Scholar 

  27. G. Gabrielse, Relativistic mass increase at slow speeds. Am. J. Phys. 63, 568 (1995)

    Article  ADS  Google Scholar 

  28. Y. Yaremko, Relativistic shifts of eigenfrequencies in an ideal Penning trap. Int. J. Mass Spectrom. 405, 64 (2016)

    Article  Google Scholar 

  29. Y. Yaremko, M. Przybylska, A.J. Maciejewski, Dynamics of a relativistic charge in the Penning trap. Chaos 25, 053102 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. H. Mendlowitz, Double scattering of electrons with magnetic interaction. Phys. Rev. 97, 33 (1955)

    Article  ADS  MATH  Google Scholar 

  31. V. Bargmann, L. Michel, V.L. Telegdi, Precession of the polarization of particles moving in a homogeneous electromagnetic field. Phys. Rev. Lett. 2, 435 (1958)

    Article  ADS  Google Scholar 

  32. F. Combley, F.J.M. Ferley, J.H. Field, E. Picasso, \(g-2\) Experiments as a test of special relativity. Phys. Rev. Lett. 42, 1383 (1979)

    Article  ADS  Google Scholar 

  33. A.A. Sokolov, I.M. Ternov, Dokl. Akad. Nauk SSSR 153, 1052 (1963)

    Google Scholar 

  34. J. Schwinger, On gauge invariance and vacuum polarization. Phys. Rev. 82, 664 (1951)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. E.T. Akhmedov, D. Singleton, On the relation between Unruh and Sokolov-Ternov effects. Int. J. Mod. Phy. A 22, 4797 (2007)

    Article  ADS  MATH  Google Scholar 

  36. H. Häffner et al., High-accuracy measurement of the magnetic moment anomaly of the electron bound in hydrogen-like carbon. Phys. Rev. Lett. 85, 5308 (2000)

    Article  ADS  Google Scholar 

  37. J. Verdú et al., Electronic \(g\) factor of hydrogen-like oxygen \(^{16}\)O\(^{7+}\). Phys. Rev. Lett. 92, 093002 (2004)

    Article  ADS  Google Scholar 

  38. S. Sturm et al., g factor of hydrogen-like \(^{28}\)Si\(^{13+}\). Phys. Rev. Lett. 107, 023002 (2011)

    Article  ADS  Google Scholar 

  39. D. von Lindenfels et al., Experimental access to higher-order Zeeman effects by precision spectroscopy of highly charged ions in a Penning trap. Phys. Rev. A 87, 023412 (2013)

    Article  ADS  Google Scholar 

  40. A. Herlert, L. Schweikhard, M. Vogel, Charge-changing reactions and their influence on the ion motion in a Penning trap. AIP Conference Proceedings 606, 652 (2002)

    Article  ADS  Google Scholar 

  41. R.C. Thompson, D.C. Wilson, The motion of small numbers of ions in a Penning trap. Z. Phys. D 42, 271 (1997)

    Article  ADS  Google Scholar 

  42. R.C. Thompson, Penning traps, in: Trapped Charged Particles, M. Knoop, N. Madsen, R.C. Thompson, eds., World Scientific (2016)

    Google Scholar 

  43. E.A. Cornell, K.R. Boyce, D.L.K. Fygenson, D.E. Pritchard, Two ions in a Penning trap: implications for precision mass spectroscopy. Phys. Rev. A 45, 3049 (1992)

    Article  ADS  Google Scholar 

  44. M. Redshaw, J. McDaniel, W. Shi, E.G. Myers, Mass ratio of two ions in a Penning trap by alternating between the trap center and a large cyclotron orbit. Int. J. Mass Spectrom. 251, 125 (2006)

    Article  Google Scholar 

  45. M. Redshaw, J. McDaniel, E.G. Myers, Dipole moment of PH+ and the atomic masses of \(^{28}\)Si, \(^{31}\)P by comparing cyclotron frequencies of two ions simultaneously trapped in a Penning trap. Phys. Rev. Lett. 100, 093002 (2008)

    Article  ADS  Google Scholar 

  46. M.J. Höcker, Precision Mass Measurements at THe-Trap and the FSU trap, Ph.D. thesis, University of Heidelberg, 2016

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Vogel .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vogel, M. (2018). Inherent Effects of Single-Particle Confinement. In: Particle Confinement in Penning Traps. Springer Series on Atomic, Optical, and Plasma Physics, vol 100. Springer, Cham. https://doi.org/10.1007/978-3-319-76264-7_7

Download citation

Publish with us

Policies and ethics