Skip to main content

Optical Spectroscopy

  • Chapter
  • First Online:
Particle Confinement in Penning Traps

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 100))

  • 1031 Accesses

Abstract

Confinement of particles in Penning traps yields two major advantages for spectroscopy, namely localisation for extended periods (i.e. the particle position is constant and well-known) and cooling (which leads to small Doppler shifts and broadening of transitions). Also, the particle ensemble can often be treated as a point-like source, which facilitates detection. We give a short account of the important aspects to optical spectroscopy when performed in a Penning trap.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Werth, V.N. Gheorghe, F.G. Major, Charged Particle Traps (Springer, Heidelberg, 2005)

    Google Scholar 

  2. G. Werth, V.N. Gheorghe, F.G. Major, Charged Particle Traps II (Springer, Heidelberg, 2009)

    Book  Google Scholar 

  3. J.J. Bollinger, S.L. Gilbert, W.M. Itano, D.J. Wineland, Frequency standards utilizing penning traps, in Frequency Standards and Metrology (Springer, Berlin, 1989)

    Google Scholar 

  4. F. Riehle, Frequency Standards: Basics and Applications (Wiley VCH, Weinheim, 2006)

    Google Scholar 

  5. R.C. Thomspon, High-resolution laser spectroscopy of atomic systems. Rep. Prog. Phys. 48, 531 (1985)

    Article  ADS  Google Scholar 

  6. W. Demtröder, Laser Spectroscopy (Springer, Heidelberg, 2003)

    Book  Google Scholar 

  7. I. Prochazka, K. Hamal, B. Sopko, Recent achievements in single photon detectors and their applications. J. Mod. Opt. 51, 1289 (2004)

    Article  ADS  Google Scholar 

  8. L. Gruber, J.P. Holder, D. Schneider, Formation of strongly coupled plasmas from multi-component ions in a Penning trap. Phys. Scr. 71, 60 (2005)

    Article  ADS  Google Scholar 

  9. T. Murböck et al., Rapid crystallization of externally produced ions in a Penning trap. Phys. Rev. A 94, 043410 (2016)

    Article  ADS  Google Scholar 

  10. S. Bharadia, M. Vogel, D.M. Segal, R.C. Thompson, Dynamics of laser-cooled Ca\(^+\) ions in a Penning trap with a rotating wall. Appl. Phys. B 107, 1105 (2012)

    Article  ADS  Google Scholar 

  11. L. Gruber et al., Evidence for highly charged ion coulomb crystallization in multicomponent strongly coupled plasmas. Phys. Rev. Lett. 86, 636 (2001)

    Article  ADS  Google Scholar 

  12. S. Mavadia et al., Control of the conformations of ion Coulomb crystals in a Penning trap. Nat. Comm. 4, 2571 (2013)

    Article  Google Scholar 

  13. D. von Lindenfels et al., Half-open Penning trap with efficient light collection for precision laser spectroscopy of highly charged ions. Hyp. Int. 227, 197 (2014)

    ADS  Google Scholar 

  14. D. Von Lindenfels et al., Bound electron \(g\)-factor measurement by double-resonance spectroscopy on a fine-structure transition. Can. J. Phys. 89, 79 (2011)

    Article  ADS  Google Scholar 

  15. D. von Lindenfels et al., Experimental access to higher-order Zeeman effects by precision spectroscopy of highly charged ions in a Penning trap. Phys. Rev. A 87, 023412 (2013)

    Article  ADS  Google Scholar 

  16. R. Jöhren et al., APDs as single-photon detectors for visible and near-infrared wavelengths down to Hz rates. J. Instrum. 7, P02015 (2012)

    Article  Google Scholar 

  17. R. Jöhren, Spectroscopy of the hyperfine transition in lithium-like bismuth at the ESR at GSI and an APD-based single-photon detector for laser spectroscopy on highly charged ions, Ph.D. thesis, University of Münster (2013)

    Google Scholar 

  18. D.H. Slichter et al., UV-sensitive superconducting nanowire single photon detectors for integration in an ion trap. Opt. Express 25, 8705 (2017)

    Article  ADS  Google Scholar 

  19. L. Jiang, W.B. Whitten, S. Pau, A planar ion trapping microdevice with integrated waveguides for optical detection. Opt. Express 19, 3037 (2011)

    Article  ADS  Google Scholar 

  20. S. Stahl et al., A planar Penning trap. Eur. Phys. J. D 32, 139 (2005)

    Article  ADS  Google Scholar 

  21. J.R. Castrejon-Pita, R.C. Thompson, Proposal for a planar Penning ion trap. Phys. Rev. A 72, 013405 (2005)

    Article  ADS  Google Scholar 

  22. F. Galve, P. Fernandez, G. Werth, Operation of a planar Penning trap. Eur. Phys. J. D 40, 201 (2006)

    Article  ADS  Google Scholar 

  23. P. Bushev, S. Stahl, R. Natali, G. Marx, E. Stachowska, G. Werth, M. Hellwig, F. Schmidt-Kaler, Electrons in a cryogenic planar Penning trap and experimental challenges for quantum processing. Eur. Phys. J. D 50, 97 (2008)

    Article  ADS  Google Scholar 

  24. J. Goldmann, G. Gabrielse, Optimized planar Penning traps for quantum information studies. Phys. Rev. A 81, 052335 (2010)

    Article  ADS  Google Scholar 

  25. J.R. Castrejon-Pita et al., Novel designs for Penning ion traps. J. Mod. Opt. 11, 1581 (2007)

    Article  ADS  Google Scholar 

  26. R. Maiwald, D. Leibfried, J. Britton, J.C. Bergquist, G. Leuchs, D.J. Wineland, Stylus ion trap for enhanced access and sensing. Nat. Phys. 5, 551 (2009)

    Article  Google Scholar 

  27. N. Yu, W. Nagourney, H. Dehmelt, Demonstration of new Paul-Straubel trap for trapping single ions. J. Appl. Phys. 69, 3779 (1991)

    Article  ADS  Google Scholar 

  28. C. Schrama, E. Peik, W. Smith, H. Walther, Novel miniature ion traps. Opt. Commun. 101, 32 (1993)

    Article  ADS  Google Scholar 

  29. L. Deslauriers et al., Scaling and suppression of anomalous heating in ion traps. Phys. Rev. Lett. 97, 103007 (2006)

    Article  ADS  Google Scholar 

  30. M.J. Goeckner, J. Goree, T.E. Sheridan, Saturation broadening of laser-induced fluorescence from plasma ions. Rev. Sci. Inst. 64, 996 (1993)

    Article  ADS  Google Scholar 

  31. D. Budker, D.F. Kimball, D.P. DeMille, Atomic Physics (Oxford University Press, Oxford, 2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Vogel .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vogel, M. (2018). Optical Spectroscopy. In: Particle Confinement in Penning Traps. Springer Series on Atomic, Optical, and Plasma Physics, vol 100. Springer, Cham. https://doi.org/10.1007/978-3-319-76264-7_18

Download citation

Publish with us

Policies and ethics