Skip to main content

Radio-Frequency Spectroscopy: Penning-Trap Mass Spectrometry

  • Chapter
  • First Online:
  • 1025 Accesses

Part of the book series: Springer Series on Atomic, Optical, and Plasma Physics ((SSAOPP,volume 100))

Abstract

This chapter takes a short look at mass spectrometry in Penning traps, which to some extent is one specific application of radio-frequency spectroscopy of the particle oscillations in the trap. We have a brief look at precision mass spectrometry, and then discuss mass spectrometry as an analytical tool for a quantitative determination of the trap content.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. D.B. Pinegar, K. Blaum, T.P. Biesiadzinski, S.L. Zafonte, R.S. Van Dyck Jr., Stable voltage source for Penning trap experiments. Rev. Sci. Inst. 80, 064701 (2009)

    Article  ADS  Google Scholar 

  2. D.J. Wineland, J.J. Bollinger, W.M. Itano, Laser-fluorescence mass spectroscopy. Phys. Rev. Lett. 50, 628 (1983)

    Article  ADS  Google Scholar 

  3. E.A. Cornell et al., Single-ion cyclotron resonance measurement of M(CO\(^+\))/M(N\(_2^+\)). Phys. Rev. Lett. 63, 1674 (1989)

    Article  ADS  Google Scholar 

  4. M. Redshaw, J. McDaniel, E.G. Myers, Dipole moment of PH+ and the atomic masses of \(^{28}\)Si, \(^{31}\)P by comparing cyclotron frequencies of two ions simultaneously trapped in a Penning trap. Phys. Rev. Lett. 100, 093002 (2008)

    Article  ADS  Google Scholar 

  5. D.L. Farnham, R.S. van Dyck, P.B. Schwinberg, Determination of the electron’s atomic mass and the proton/electron mass ratio via Penning trap mass spectroscopy. Phys. Rev. Lett. 75, 3598 (1995)

    Article  ADS  Google Scholar 

  6. S. Ulmer et al., High-precision comparison of the antiproton-to-proton charge-to-mass ratio. Nature 524, 196 (2015)

    Article  ADS  Google Scholar 

  7. G. Gabrielse, A. Khabbaz, D.S. Hall, C. Heimann, H. Kalinowsky, W. Jhe, Precision mass spectroscopy of the antiproton and proton using simultaneously trapped particles. Phys. Rev. Lett. 82, 3198 (1999)

    Article  ADS  Google Scholar 

  8. F. DiFilippo, V. Natarajan, M. Bradley, F. Palmer, D.E. Pritchard, Accurate atomic mass measurements from Penning trap mass comparisons of individual ions. Phys. Scr. T59, 144 (1995)

    Article  ADS  Google Scholar 

  9. S. Brunner, T. Engel, A. Schmitt, G. Werth, Helium and deuterium mass ratios in a room temperature Penning trap. AIP Conf. Proc. 457, 125 (1999)

    Article  ADS  Google Scholar 

  10. K. Blaum et al., Carbon clusters for absolute mass measurements at ISOLTRAP. Eur. Phys. J. A 15, 245 (2002)

    Article  ADS  Google Scholar 

  11. A. Kellerbauer et al., From direct to absolute mass measurements: a study of the accuracy of ISOLTRAP. Eur. Phys. J. D 22, 53 (2003)

    Article  ADS  Google Scholar 

  12. S. Rainville et al., An ion balance for ultra-high-precision atomic mass measurements. Science 303, 334 (2004)

    Article  ADS  Google Scholar 

  13. R.S. Van Dyck Jr. et al., The UW-PTMS: systematic studies, measurement progress, and future improvements. Int. J. Mass Spectr. 251, 231 (2006)

    Article  Google Scholar 

  14. D.B. Pinegar, Tools for a precise tritium to helium-3 mass comparison, Ph.D. thesis, University of Washington, Seattle (2007)

    Google Scholar 

  15. C. Diehl et al., Progress with the MPIK/UW-PTMS in Heidelberg. Hyp. Int. 199, 291 (2011)

    Article  ADS  Google Scholar 

  16. R.S. Van Dyck Jr., S.L. Zafonte, S. Van Liew, D.B. Pinegar, P.B. Schwinberg, Ultraprecise atomic mass measurement of the \(\alpha \) Particle and \(^4\)He. Phys. Rev. Lett. 92, 220802 (2004)

    Article  Google Scholar 

  17. P.J. Mohr, D.B. Newell, B.N. Taylor, Rev. Mod. Phys. 88, 035009 (2016)

    Article  ADS  Google Scholar 

  18. J. King, J. Webb, M. Murphy, R. Carswell, Stringent null constraint on cosmological evolution of the proton-to-electron mass ratio. Phys. Rev. Lett. 101, 251304 (2008)

    Article  ADS  Google Scholar 

  19. M. Murphy, V. Flambaum, S. Muller, C. Henkel, Strong limit on a variable proton-to-electron mass ratio from molecules in the distant universe. Science 320, 1611 (2008)

    Article  ADS  Google Scholar 

  20. M.P. Bradley, J.V. Porto, S. Rainville, J.K. Thompson, D.E. Pritchard, Penning trap measurements of the masses of \(^{133}\)Cs, \(^{87,85}\)Rb, and \(^{23}\)Na with uncertainties \(<\) 0.2 ppb. Phys. Rev. Lett. 83, 4510 (1999)

    Article  ADS  Google Scholar 

  21. G. Werth, V.N. Gheorghe, F.G. Major, Charged Particle Traps II (Springer, Heidelberg, 2009)

    Book  Google Scholar 

  22. M. Block et al., Discovery of a nuclear isomer in \(^{65}\)Fe with Penning trap mass spectrometry. Phys. Rev. Lett. 100, 132501 (2008)

    Article  ADS  Google Scholar 

  23. K. Blaum et al., Population inversion of nuclear states by a Penning trap mass spectrometer. Europhys. Lett. 67, 586 (2004)

    Article  ADS  Google Scholar 

  24. T. Eronen et al., Mass and QEC value of \(^{26}\)Si. Phys. Rev. C 79, 032802 (2009)

    Article  ADS  Google Scholar 

  25. A. Kellerbauer et al., Direct mass measurements on the superallowed emitter \(^{74}\)Rb and its daughter \(^{74}\)Kr: isospin-symmetry-breaking correction for standard-model tests. Phys. Rev. Lett. 93, 072502 (2004)

    Article  ADS  Google Scholar 

  26. S. Rainville et al., World year of physics: a direct test of \(E=mc^2\). Nature 438, 1096 (2005)

    Article  ADS  Google Scholar 

  27. G. Bollen et al., The accuracy of heavy-ion mass measurements using time of flight-ion cyclotron-resonance in a Penning trap. J. Appl. Phys. 68, 4355 (1990)

    Article  ADS  Google Scholar 

  28. L. Schweikhard, M. Lindinger, H.-J. Kluge, Parametric mode excitation/dipole mode detection Fourier transform ion cyclotron resonance spectrometry. Rev. Sci. Inst. 61, 1055 (1990)

    Article  ADS  Google Scholar 

  29. D.L. Rempel, E.B. Ledford, S.K. Huang, M.L. Gross, Parametric mode operation of a hyperbolic Penning trap for Fourier transform mass spectrometry. Anal. Chem. 59, 2527 (1987)

    Article  Google Scholar 

  30. S. George et al., Ramsey method of separated oscillatory fields for high-precision Penning trap mass spectrometry. Phys. Rev. Lett. 98, 162501 (2007)

    Article  ADS  Google Scholar 

  31. S. George et al., The Ramsey method in high-precision mass spectrometry with Penning traps: experimental results. Int. J. Mass Spectr. 264, 110 (2007)

    Article  Google Scholar 

  32. M. Kretzschmar, The Ramsey method in high-precision mass spectrometry with Penning traps: theoretical foundations. Int. J. Mass Spectr. 264, 122 (2007)

    Article  Google Scholar 

  33. M. Heck et al., One- and two-pulse quadrupolar excitation schemes of the ion motion in a Penning trap investigated with FT-ICR detection. Appl. Phys. B 107, 1019 (2012)

    Article  ADS  Google Scholar 

  34. P. Ascher et al., PIPERADE: a Penning-trap isobar separator for the DESIR low-energy facility of SPIRAL2. EPJ Web of Conferences 66, 11002 (2014)

    Article  Google Scholar 

  35. E. Minaya Ramirez et al., Conception of PIPERADE: a high-capacity Penning-trap mass separator for high isobaric contamination at DESIR. Nucl. Inst. Meth. B 376, 298 (2016)

    Article  ADS  Google Scholar 

  36. K. Blaum et al., Penning traps as a versatile tool for precise experiments in fundamental physics. Contemp. Phys. 51, 149 (2010)

    Article  ADS  Google Scholar 

  37. E.G. Myers, The most precise atomic mass measurements in Penning traps. Int. J. Mass Spectr. 349–350, 107 (2013)

    Article  Google Scholar 

  38. K. Blaum, High-accuracy mass spectrometry with stored ions. Phys. Rep. 425, 1 (2006)

    Article  ADS  Google Scholar 

  39. G. Bollen et al., Experiments with thermalized rare isotope beams from projectile fragmentation: a precision mass measurement of the superallowed \(\beta \) emitter \(^{38}\)Ca. Phys. Rev. Lett. 96, 152501 (2006)

    Article  ADS  Google Scholar 

  40. M. Smith et al., First Penning-trap mass measurement of the exotic halo nucleus \(^{11}\)Li. Phys. Rev. Lett. 101, 202501 (2008)

    Article  ADS  Google Scholar 

  41. E. Minaya Ramirez et al., Direct mapping of nuclear shell effects in the heaviest elements. Science 337, 1207 (2012)

    Article  ADS  Google Scholar 

  42. M. Block, High-precision mass measurements of radionuclides in Penning traps, in: Fundamental Physics in Particle Traps, Springer Tracts in Modern Physics, vol 256 (Springer, Berlin, 2014)

    Google Scholar 

  43. M. Block, Mass measurements and ion-manipulation techniques applied to the heaviest elements, Nobel Symposium NS160 - Chemistry and Physics of Heavy and Superheavy Elements, EPJ Web of Conferences, vol 131, 05003 (2016)

    Google Scholar 

  44. M.B. Comisarow, Fourier transform ion cyclotron resonance spectroscopy. Chem. Phys. Lett. 25, 282 (1974)

    Article  ADS  Google Scholar 

  45. A.G. Marshall, Fourier transform ion cyclotron resonance detection: principles and experimental configurations. Int. J. Mass Spectr. 215, 59 (2002)

    Article  Google Scholar 

  46. A.G. Marshall et al., Fourier transform ion cyclotron resonance mass spectrometry: a primer. Mass Spectrom. Rev. 17, 1 (1998)

    Article  ADS  Google Scholar 

  47. D. Rodriguez et al., Broad-band FT-ICR MS for the Penning-trap mass spectrometer MATS. AIP Conf. Proc. 1265, 483 (2010)

    Article  ADS  Google Scholar 

  48. M. Ubieto-Diaz, A broad-band FT-ICR Penning trap system for KATRIN. Int. J. Mass. Spectr. 288, 1 (2009)

    Article  Google Scholar 

  49. H. Häffner et al., Double Penning trap technique for precise \(g\) factor determinations in highly charged ions. Eur. Phys. J. D 22, 163 (2003)

    Article  ADS  Google Scholar 

  50. W.C. Wiley, I.H. McLaren, Time-of-flight mass spectrometer with improved resolution. Rev. Sci. Inst. 26, 1150 (1955)

    Article  ADS  Google Scholar 

  51. K.L. Brown, G.W. Tautfest, Faraday-cup monitors for high-energy electron beams. Rev. Sci. Instr. 27, 696 (1956)

    Article  ADS  Google Scholar 

  52. J. Wiza, Microchannel plate detectors. Nucl. Inst. Meth. 162, 587 (1979)

    Article  ADS  Google Scholar 

  53. J.S. Allen, The detection of single positive ions, electrons and photons by a secondary electron multiplier. Phys. Rev. 55, 966 (1939)

    Article  ADS  Google Scholar 

  54. J.S. Allen, An improved electron multiplier particle counter. Rev. Sci. Inst. 18, 739 (1947)

    Article  ADS  Google Scholar 

  55. S.C. Curran, Counting Tubes, Theory and Applications (Academic Press, New York, 1949)

    Google Scholar 

  56. M. Vogel, D.F.A. Winters, H. Ernst, O. Kester, H. Zimmermann, Scintillation light produced by slow, highly-charged ions. Nucl. Inst. Meth. B 263, 518 (2007)

    Article  ADS  Google Scholar 

  57. W.R. Leo, Techniques for Nuclear and Particle Physics Experiments (Springer, Berlin, 1994)

    Book  Google Scholar 

  58. W. Göpel, J. Hesse, J.N. Zemel, Sensors, Optical Sensors (Wiley, New York, 2008). ISBN 978-3-527-62070-8

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Vogel .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vogel, M. (2018). Radio-Frequency Spectroscopy: Penning-Trap Mass Spectrometry. In: Particle Confinement in Penning Traps. Springer Series on Atomic, Optical, and Plasma Physics, vol 100. Springer, Cham. https://doi.org/10.1007/978-3-319-76264-7_16

Download citation

Publish with us

Policies and ethics